Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biotechnol Lett ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687405

RESUMO

OBJECTIVES: This study aimed to isolate red yeast from sap, bark and slime exudates collected from Polish birch forests and then assessment of their biotechnological potential. RESULTS: 24 strains of red yeast were isolated from the bark, sap and spring slime fluxes of birch (Betula pendula). Strains belonging to Rhodotorula mucilaginosa (6), Rhodosporidiobolus colostri (4), Cystrofilobasidium capitaum (3), Phaffia rhodozyma (3) and Cystobasidium psychroaquaticum (3) were dominant. The highest efficiency of carotenoid biosynthesis (5.04 mg L-1) was obtained by R. mucilaginosa CMIFS 004, while lipids were most efficiently produced by two strains of P. rhodozyma (5.40 and 5.33 g L-1). The highest amount of exopolysaccharides (3.75 g L-1) was produced by the R. glutinis CMIFS 103. Eleven strains showed lipolytic activity, nine amylolytic activity, and only two proteolytic activity. The presence of biosurfactants was not found. The growth of most species of pathogenic moulds was best inhibited by Rhodotorula yeasts. CONCLUSION: Silver birch is a good natural source for the isolation of new strains of red yeast with wide biotechnological potential.

2.
Microorganisms ; 11(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37630483

RESUMO

The aim of this study was to determine the magnesium-binding capacity of Cyberlindnera jadinii yeast in media prepared from potato wastewater and glycerol (after biodiesel production), supplemented with magnesium salt. The research was carried out in two stages. In the first, the ability to binding magnesium by yeast in media supplemented with various doses of this element was tested. In the second stage, after selecting the appropriate dose of magnesium, the culture was carried out in a bioreactor. The composition of the yeast biomass was also analysed in terms of lipids and protein content and amino acid composition. Studies have shown that this type of medium can be used as a culture medium for the growth of C. jadinii yeast. In the first stage of the study, the most magnesium (8.97 mg/gd.m.) was bound by yeast cells after 48 h of cultivation in a medium supplemented with the addition of magnesium at a dose of 2 g/L. In the second stage of the research, the highest magnesium content in the biomass (7.9 mg/gd.m.) was noted after 24 h of cultivation in the same medium. The lipid and protein contents in the biomass obtained after 24 h of cultivation in the bioreactor were 6.35 and 43.73%, respectively. The main fatty acids present in the yeast lipids were oleic acid (59.4%) and linoleic acid (8.6%). Analysis of the amino acid profile of the proteins showed the highest proportions were glutamic acid (13.7%) and aspartic acid (11%).

3.
Artigo em Inglês | MEDLINE | ID: mdl-37646889

RESUMO

Due to the growing demand for natural carotenoids, researchers have been searching for strains that are capable of efficient synthesis of these compounds. This study tested 114 red yeast strains collected from various natural environments and food specimens in Poland. The strains were isolated by their ability to produce red or yellow pigments in rich nutrient media. According to potential industrial significance of the carotenoids, both their total production and share of individual carotenoids (ß-carotene, γ-carotene, torulene, and torularhodin) were analyzed. The total content of carotenoid pigments in the yeast dry matter ranged from 13.88 to 406.50 µg/g, and the percentages of individual carotenoids highly varied among the strains. Most of the yeast isolates synthesized torulene at the highest amount. Among the studied strains, isolates with a total carotenoid content in biomass greater than 200 µg/g and those containing more than 60% torularhodin were selected for identification (48 strains). The identified strains belonged to six genera: Rhodotorula, Sporidiobolus, Sporobolomyces, Buckleyzyma, Cystofilobasidium, and Erythrobasidium. The largest number of isolates belonged to Rhodotorula babjevae (18), Rhodotorula mucilaginosa (7), Sporidiobolus pararoseus (4), and Rhodotorula glutinis (4).

4.
Viruses ; 15(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36680211

RESUMO

This study aimed to evaluate the effectiveness of the phage cocktail to improve the microbiological quality of five different mixed-leaf salads: rucola, mixed-leaf salad with carrot, mixed-leaf salad with beetroot, washed and unwashed spinach, during storage in refrigerated conditions. Enterobacterales rods constituted a significant group of bacteria in the tested products. Selected bacteria were tested for antibiotic resistance profiles and then used to search for specific bacteriophages. Forty-three phages targeting bacteria dominant in mixed-leaf salads were isolated from sewage. Their titer was determined, and lytic activity was assessed using the Bioscreen C Pro automated growth analyzer. Two methods of phage cocktail application including spraying, and an absorption pad were effective for rucola, mixed leaf salad with carrot, and mixed leaf salad with beetroot. The maximum reduction level after 48 h of incubation reached 99.9% compared to the control sample. In washed and unwashed spinach, attempts to reduce the number of microorganisms did not bring the desired effect. The decrease in bacteria count in the lettuce mixes depended on the composition of the autochthonous saprophytic bacteria species. Both phage cocktail application methods effectively improved the microbiological quality of minimally processed products. Whole-spectral phage cocktail application may constitute an alternative food microbiological quality improvement method without affecting food properties.


Assuntos
Bacteriófagos , Bactérias , Carga Bacteriana , Lactuca
5.
Microorganisms ; 10(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35744771

RESUMO

This work reports the effect of simple feeding strategies and temperature to obtain high-cell-density cultures of Rhodotorula glutinis var. rubescens LOCKR13 maximizing the de novo lipid productivity using deproteinated potato wastewater (DPW) as a basic medium. Feeding DPW with glucose enables a high yield of Rhodotorula glutinis var. rubescens LOCKR13 biomass (52 g d.w. L−1) to be obtained. The highest values of lipid accumulation (34.15%, w/w), production (14.68 g L−1) and yield coefficients (YL/S: 0.242 g g−1), and volumetric productivity (PL: 0.1 g L−1 h−1) were reached by the strain in the two-stage fed-batch process at 20 °C. The lipid of yeast biomass was rich in oleic acid (Δ9C18:1) and palmitic acid (C16:0), and the lower temperature of incubation significantly increased the MUFA (especially oleic acid) content. For the first time, a unique set of thermal analyses of the microbial oil was performed. The isotherms of the oxidation kinetics (PDSC) showed that lipids extracted from the biomass of red yeast had high oxidative stability. This feature of the yeast oil can be useful for long-shelf-life food products and can be promising for the production of biodiesel.

6.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680050

RESUMO

The aim of this study was to isolate phage enzymes and apply them in vitro for eradication of the dominant saprophytic bacteria isolated from minimally processed food. Four bacteriophages-two Enterobacter-specific and two Serratia-specific, which produce lytic enzymes-were used in this research. Two methods of phage enzyme isolation were tested, namely precipitation with acetone and ultracentrifugation. It was found that the number of virions could be increased almost 100 times due to the extension of the cultivation time (72 h). The amplification of phage particles and lytic proteins was dependent on the time of cultivation. Considering the influence of isolated enzymes on the growth kinetics of bacterial hosts, proteins isolated with acetone after 72-hour phage propagation exhibited the highest inhibitory effect. The reduction of bacteria count was dependent on the concentration of enzymes in the lysates. The obtained results indicate that phages and their lytic enzymes could be used in further research aiming at the improvement of microbiological quality and safety of minimally processed food products.


Assuntos
Bacteriófagos , Acetona , Bactérias , Carga Bacteriana , Microbiologia de Alimentos
7.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830335

RESUMO

The food industry is still searching for novel solutions to effectively ensure the microbiological safety of food, especially fresh and minimally processed food products. Nowadays, the use of bacteriophages as potential biological control agents in microbiological food safety and preservation is a promising strategy. The aim of the study was the isolation and comprehensive characterization of novel bacteriophages with lytic activity against saprophytic bacterial microflora of minimally processed plant-based food products, such as mixed leaf salads. From 43 phages isolated from municipal sewage, four phages, namely Enterobacter phage KKP 3263, Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 have lytic activity against Enterobacter ludwigii KKP 3083, Citrobacter freundii KKP 3655, Enterobacter cloacae KKP 3082, and Serratia fonticola KKP 3084 bacterial strains, respectively. Transmission electron microscopy (TEM) and whole-genome sequencing (WGS) identified Enterobacter phage KKP 3263 as an Autographiviridae, and Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 as members of the Myoviridae family. Genome sequencing revealed that these phages have linear double-stranded DNA (dsDNA) with sizes of 39,418 bp (KKP 3263), 61,608 bp (KKP 3664), 84,075 bp (KKP 3262), and 148,182 bp (KKP 3264). No antibiotic resistance genes, virulence factors, integrase, recombinase, or repressors, which are the main markers of lysogenic viruses, were annotated in phage genomes. Serratia phage KKP 3264 showed the greatest growth inhibition of Serratia fonticola KKP 3084 strain. The use of MOI 1.0 caused an almost 5-fold decrease in the value of the specific growth rate coefficient. The phages retained their lytic activity in a wide range of temperatures (from -20 °C to 50 °C) and active acidity values (pH from 4 to 11). All phages retained at least 70% of lytic activity at 60 °C. At 80 °C, no lytic activity against tested bacterial strains was observed. Serratia phage KKP 3264 was the most resistant to chemical factors, by maintaining high lytic activity across a broader range of pH from 3 to 11. The results indicated that these phages could be a potential biological control agent against saprophytic bacterial microflora of minimally processed plant-based food products.


Assuntos
Bacteriófagos/genética , Citrobacter freundii/virologia , Enterobacter cloacae/virologia , Inocuidade dos Alimentos/métodos , Genoma Viral , Myoviridae/genética , Serratia/virologia , Bacteriólise/fisiologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Agentes de Controle Biológico/classificação , Agentes de Controle Biológico/isolamento & purificação , DNA Viral/genética , Microbiologia de Alimentos/métodos , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Humanos , Myoviridae/classificação , Myoviridae/isolamento & purificação , Filogenia , Esgotos/virologia , Verduras/microbiologia
8.
Acta Sci Pol Technol Aliment ; 20(4): 473-484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34724371

RESUMO

BACKGROUND: ood producers strive to meet the changing needs of consumers while maintaining the highest nutritional value of the products they supply. Physicochemical methods, which include modified atmosphere packaging, membrane techniques or ultrasounds, are the most frequently used to preserve food. Alternatively, biological methods can be applied, one of which is the use of bacteriophages (phages) to limit bacterial growth in the food environment. The purpose of our research was to verify the possibility of the use of bacteriophages as an antibacterial agent in minimally processed food environments of vegetable origin. The first stage of the research involved the isolation of phages against the dominant bacterial microflora in the analyzed products: broccoli sprouts, spinach leaves and freshly squeezed carrot-celery juice. Bacteriophages were isolated from municipal waste collected from sewage-treatment plants. Specific bacteriophages were isolated for twenty-nine out of thirty identified bacterial strains. The lytic activity of the phages was tested using a Bioscreen C automatic growth analyzer. Three methods for applying the phage cocktail were tested: direct addition of the cocktail, spraying it on, and placing the food product on a pad soaked with the phage mixture. The food products were packaged in a protective atmosphere and stored at 20°C. The total number of bacteria after adding the phage cocktail to the products was determined during the subsequent hours of incubation using classical microbial culturing. A significant decrease in the total number of bacteria was observed in the products containing phage suspensions. The obtained results suggest that application of the phage cocktail offers the possibility to extend the shelf life of the analyzed minimally processed food products by reducing the total number of saprophytic. METHODS: , food producers strive to meet the changing needs of consumers while maintaining the highest nutritional value of the products they supply. Physicochemical methods, which include modified atmosphere packaging, membrane techniques or ultrasounds, are the most frequently used to preserve food. Alternatively, biological methods can be applied, one of which is the use of bacteriophages (phages) to limit bacterial growth in the food environment. The purpose of our research was to verify the possibility of the use of bacteriophages as an antibacterial agent in minimally processed food environments of vegetable origin. The first stage of the research involved the isolation of phages against the dominant bacterial microflora in the analyzed products: broccoli sprouts, spinach leaves and freshly squeezed carrot-celery juice. Bacteriophages were isolated from municipal waste collected from sewage-treatment plants. Specific bacteriophages were isolated for twenty-nine out of thirty identified bacterial strains. The lytic activity of the phages was tested using a Bioscreen C automatic growth analyzer. Three methods for applying the phage cocktail were tested: direct addition of the cocktail, spraying it on, and placing the food product on a pad soaked with the phage mixture. The food products were packaged in a protective atmosphere and stored at 20°C. The total number of bacteria after adding the phage cocktail to the products was determined during the subsequent hours of incubation using classical microbial culturing. A significant decrease in the total number of bacteria was observed in the products containing phage suspensions. The obtained results suggest that application of the phage cocktail offers the possibility to extend the shelf life of the analyzed minimally processed food products by reducing the total number of saprophytic bac. RESULTS: , food producers strive to meet the changing needs of consumers while maintaining the highest nutritional value of the products they supply. Physicochemical methods, which include modified atmosphere packaging, membrane techniques or ultrasounds, are the most frequently used to preserve food. Alternatively, biological methods can be applied, one of which is the use of bacteriophages (phages) to limit bacterial growth in the food environment. The purpose of our research was to verify the possibility of the use of bacteriophages as an antibacterial agent in minimally processed food environments of vegetable origin. The first stage of the research involved the isolation of phages against the dominant bacterial microflora in the analyzed products: broccoli sprouts, spinach leaves and freshly squeezed carrot-celery juice. Bacteriophages were isolated from municipal waste collected from sewage-treatment plants. Specific bacteriophages were isolated for twenty-nine out of thirty identified bacterial strains. The lytic activity of the phages was tested using a Bioscreen C automatic growth analyzer. Three methods for applying the phage cocktail were tested: direct addition of the cocktail, spraying it on, and placing the food product on a pad soaked with the phage mixture. The food products were packaged in a protective atmosphere and stored at 20°C. The total number of bacteria after adding the phage cocktail to the products was determined during the subsequent hours of incubation using classical microbial culturing. A significant decrease in the total number of bacteria was observed in the products containing phage suspensions. The obtained results suggest that application of the phage cocktail offers the possibility to extend the shelf life of the analyzed minimally processed food products by reducing the total number of saprophytic bacteria.


Assuntos
Bacteriófagos , Bactérias , Verduras
9.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722488

RESUMO

Selenium (Se) was found to inhibit the growth of the yeast Candida utilis ATCC 9950. Cells cultured in 30 mg selenite/L supplemented medium could bind 1368 µg Se/g of dry weight in their structures. Increased accumulation of trehalose and glycogen was observed, which indicated cell response to stress conditions. The activity of antioxidative enzymes (glutathione peroxidase, glutathione reductase, thioredoxin reductase, and glutathione S-transferase) was significantly higher than that of the control without Se addition. Most Se was bound to water-insoluble protein fraction; in addition, the yeast produced 20-30 nm Se nanoparticles (SeNPs). Part of Se was metabolized to selenomethionine (10%) and selenocysteine (20%). The HPLC-ESI-Orbitrap MS analysis showed the presence of five Se compounds combined with glutathione in the yeast. The obtained results form the basis for further research on the mechanisms of Se metabolism in yeast cells.


Assuntos
Antioxidantes/metabolismo , Candida/metabolismo , Proteínas Fúngicas/metabolismo , Nanopartículas Metálicas/química , Oxirredutases/metabolismo , Selênio/farmacologia , Selênio/química
10.
J Microbiol Methods ; 176: 105999, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659296

RESUMO

The present study examined the effect of six disruption methods of the cell wall (acid hydrolysis, ultrasonication, osmotic shock, pasteurization, homogenization with zirconia balls, and freezing/defrosting) on the efficiency of lipid extraction from yeast cells and the composition of fatty acids. Acid hydrolysis and sonication led to a significant increase in lipid extraction from Cyberlindnera jadinii ATCC 9950 and Rhodotorula glutinis LOCKR13 yeast cells. The amount of lipids extracted in these conditions increased for C. jadinii from 12.46 (biomass not subjected to any pretreatment) to 20.37 and 19.53 g/100 gd.w. after the application of acid hydrolysis and sonication, respectively, and for R. glutinis strain from 13.95 to 21.20 and 17.22 g/100 gd.w., respectively, for the same methods. Initial sonication of biomass led to a significant reduction in the percentage of unsaturated fatty acids. The largest differences in fatty acid composition were found for the sample homogenized with zirconium balls. This process resulted in the degradation of both oleic acid and linolenic acid. The obtained results revealed that the method that significantly increases lipid extraction and does not change the composition of fatty acids is acid hydrolysis with hydrochloric acid. In addition, it is easy, cheap, does not require specialized equipment, and therefore can be implemented in any laboratory.


Assuntos
Candida/química , Ácidos Graxos , Rhodotorula/química , Parede Celular/química , Ácidos Graxos/análise , Ácidos Graxos/isolamento & purificação , Hidrólise , Sonicação/métodos
11.
World J Microbiol Biotechnol ; 35(10): 157, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576445

RESUMO

In this study, we aimed to determine the effect of exogenous stress factors (sodium chloride as osmotic stressor, hydrogen peroxide as an inducer of oxidative stress, white light irradiation, and low temperature) on the biosynthesis of carotenoids and lipids by red yeast (Rhodotorula glutinis, R. mucilaginosa, and R. gracilis) during cultivation in media containing potato wastewater and glycerol. According to our results, the yeast were able to grow and biosynthesize lipids and carotenoids in the presence of the applied stress factors. Low temperature caused an increase in the biosynthesis of intracellular lipids and carotenoids. R. gracilis synthesized lipids (21.1 g/100 gd.w.) and carotenoids (360.4 µg/gd.w.) in greater quantities than that of other strains. Under these conditions, there was also an increase in the content of unsaturated fatty acids, especially linoleic and linolenic acids. The highest percentage of polyunsaturated fatty acid (PUFA) (30.4%) was synthesized by the R. gracilis yeast after cultivation at 20°C. Their quantity was 2.5-fold greater than that of the biomass grown in control conditions. The contribution of individual carotenoid fractions depended both on the yeast strain and the culture conditions. Induction of osmotic stress and low temperature intensified the biosynthesis of ß-carotene (up to 73.9% of the total carotenoid content). In oxidative stress conditions, yeast synthesized torulene (up to 82.2%) more efficiently than under other conditions, whereas white light irradiation increased the production of torularhodin (up to 20.0%).


Assuntos
Carotenoides/biossíntese , Meios de Cultura/metabolismo , Lipídeos/biossíntese , Rhodotorula/metabolismo , Meios de Cultura/química , Resíduos Industriais/análise , Rhodotorula/genética , Rhodotorula/crescimento & desenvolvimento
12.
Appl Biochem Biotechnol ; 189(2): 589-607, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31073981

RESUMO

AbstractThe objective of this study was to determine the possibility of simultaneous biosynthesis of lipids and carotenoids by the Rhodotorula yeast strains in media with waste glycerol and deproteinized potato wastewater and to determine the level of pollution reduction by media. On the basis of results obtained during the yeast microcultures in the Bioscreen C system, it was found that potato wastewater and glycerol can be used as components of media for Rhodotorula glutinis, Rhodotorula mucilaginosa, and Rhodotorula gracilis yeast strains. The amount of glycerol added to media higher than 10% significantly decreased the growth rate of yeast. The results of yeast culture in the laboratory shaker flasks showed a possibility of simultaneous production of lipids and carotenoids by R. glutinis, R. mucilaginosa, and R. gracilis yeast strains during cultivation in media containing only waste glycerol and deproteinized potato wastewater. A higher intracellular lipid content (approximately 15 g/100 gd.w.) was obtained for R. mucilaginosa and R. gracilis yeast biomass after cultivation in experimental media with waste glycerol and potato wastewater. In conclusion, the yeast grown in media with potato wastewater supplemented with 3% or 5% glycerol synthesized carotenoids, and their content in biomass did not exceed 230 µg/gd.w.


Assuntos
Carotenoides/biossíntese , Glicerol/química , Lipídeos/biossíntese , Rhodotorula/crescimento & desenvolvimento , Solanum tuberosum/química , Águas Residuárias
13.
Toxins (Basel) ; 11(4)2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935045

RESUMO

Mycotoxins are harmful contaminants of food and feed worldwide. Feed additives with the abilities to trap mycotoxins are considered substances which regulate toxin transfer from feed to tissue, reducing its absorption in animal digestive tract. Market analysis emphasizes growing interest of feed producers in mycotoxins binders obtained from yeast biomass. The aim of the study was to prescreen cell walls (CW) and ß(1,3)/(1,6)-glucan (ß-G) preparations isolated from Candida utilis ATCC 9950 cultivated on waste potato juice water with glycerol as adsorbents for aflatoxin B1 (AFB1), zearalenone (ZEN), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T-2) and fumonisin B1 (FB1). The adsorption was studied in single concentration tests at pH 3.0 and 6.0 in the presence of 1% of the adsorbent and 500 ng/mL of individual toxin. Evaluated CW and ß-G preparations had the potential to bind ZEN, OTA and AFB1 rather than DON, NIV, T-2 toxin and FB1. The highest percentage of adsorption (about 83%), adsorption capacity (approx. 41 µg/ g preparation) and distribution coefficient (458.7mL/g) was found for zearalenone when CW preparation was used under acidic conditions. Higher protein content in CW and smaller particles sizes of the formulation could influence more efficient binding of ZEN, OTA, DON and T-2 toxin at appropriate pH compared to purified ß-G. Obtained results show the possibility to transform the waste potato juice water into valuable Candida utilis ATCC 9950 preparation with mycotoxins adsorption properties. Further research is important to improve the binding capacity of studied preparations by increasing the active surface of adsorption.


Assuntos
Candida , Parede Celular/química , Glucanos/química , Micotoxinas/química , Agricultura , Glicerol/química , Solanum tuberosum/química , Gerenciamento de Resíduos/métodos , Resíduos
14.
Mol Biol Rep ; 46(2): 1797-1808, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734169

RESUMO

Selenium exhibits health-promoting properties in humans and animals. Therefore, the development of selenium-enriched dietary supplements has been growing worldwide. However, it may also exhibit toxicity at higher concentrations, causing increased oxidative stress. Different species of yeasts may exhibit different tolerances toward selenium. Therefore, in this study, we aimed to determine the effect of selenium on growth and on the antioxidative system in Candida utilis ATCC 9950 and Saccharomyces cerevisiae ATCC MYA-2200 yeast cells. The results of this study have demonstrated that high doses of selenium causes oxidative stress in yeasts, thereby increasing the process of lipid peroxidation. In addition, we obtained an increased level of GSSG from aqueous solutions of yeast biomass grown with selenium supplementation (40-60 mg/L). Increased levels of selenium in aqueous solutions resulted in an increase in the activity of antioxidant enzymes, including glutathione peroxidase and glutathione reductase. These results should encourage future research on the possibility of a thorough understanding of antioxidant system functioning in yeast cells.


Assuntos
Candida/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Selênio/metabolismo , Selênio/farmacologia , Antioxidantes/farmacologia , Candida/enzimologia , Candida/metabolismo , Proliferação de Células/efeitos dos fármacos , Suplementos Nutricionais , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Biol Trace Elem Res ; 187(1): 328, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858965

RESUMO

The authors forgot to include the following information in Materials and Methods.

16.
Biol Trace Elem Res ; 187(1): 316-327, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29675568

RESUMO

This article discusses the effect of selenium in aqueous solutions on aspects of lipid and amino acid metabolism in the cell biomass of Saccharomyces cerevisiae MYA-2200 and Candida utilis ATCC 9950 yeasts. The yeast biomass was obtained by using waste products (potato wastewater and glycerol). Selenium, at a dose of 20 mg/L of aqueous solution, affected the differentiation of cellular morphology. Yeast enriched with selenium was characterized by a large functional diversity in terms of protein and amino acid content. The protein content in the biomass of S. cerevisiae enriched with selenium (42.6%) decreased slightly as compared to that in the control sample without additional selenium supplementation (48.4%). Moreover, yeasts of both strains enriched with selenium contained a large amount of glutamic acid, aspartic acid, lysine, and leucine. Analysis of fatty acid profiles in S. cerevisiae yeast supplemented with selenium showed an increase in the unsaturated fatty acid content (e.g., C18:1). The presence of margaric acid (C17:0) and hexadecanoic acid (C17:1) was found in the C. utilis biomass enriched with selenium, in contrast to that of S. cerevisiae. These results indicate that selenium may induce lipid peroxidation, which consequently affects the loss of integrity of the cytoplasmic membrane. Yeast enriched with selenium with optimal amino acid and lipid composition can be used to prepare a novel formula of dietary supplements, which can be applied directly to various diets for both humans and animals.


Assuntos
Aminoácidos/química , Candida/química , Lipídeos/química , Saccharomyces cerevisiae/química , Selênio/análise , Aminoácidos/metabolismo , Biomassa , Candida/metabolismo , Metabolismo dos Lipídeos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
17.
Acta Sci Pol Technol Aliment ; 18(4): 373-383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31930789

RESUMO

Phages were discovered relatively recently – at the turn of the 19th and 20th centuries. The idea of using bacteriophages for therapeutic purposes was promoted by d’Herelle, who conducted the first successful experiments with prokaryotic viruses. Works of contemporary scientists on phage therapy were, however, halted due to the discovery of penicillin by Alexander Fleming in 1928. Today, when many bacterial strains have developed resistance to common antibiotics offered by the pharmaceutical industry and when new, so far unknown, bacterial strains have appeared, the concept of using bacteriophages to treat bacterial infections has been revived. Considering the food sector, the search for novel solutions that would ensure the appropriate microbiological quality of minimally processed foods may bring an effective method for eradicating bacte- rial pathogens that induce food-borne infections. The employment of chemical and physical methods of food preservation often lead to the deterioration of its nutritive value and of its physical and organoleptic properties. Minimally processed foods manufactured without any drastic preservation methods can be especially at risk of developing microorganisms, including the pathogenic ones. Low-temperature production processes and cold-storage facilitate the development of psychrophilic microorganisms, while another threat is posed by the high microbiological contamination of raw materials. This work presents a biological method for the eradication of bacteria most commonly found in a food-based environment. The study concept postulated the use of bacteriophages to improve the microbiological quality of food, with special attention paid to minimally processed foods.  .


Assuntos
Bacteriófagos/fisiologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Conservação de Alimentos/métodos , Carga Bacteriana , Escherichia coli/virologia , Qualidade dos Alimentos , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Listeria monocytogenes/virologia , Salmonella/virologia
18.
Appl Microbiol Biotechnol ; 102(21): 9131-9145, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30215128

RESUMO

New ideas on production of yeast origin ß-glucan preparations for industrial application are attracting interest considering market development of that high-value functional polysaccharide. Sellecting an efficient yeast producer and designing culture conditions are a prerequisite for obtaining high yield of ß-glucan. The aim of this study was to describe at the first time the influence of the mode of cultivation (shake-flasks and batch fermentation) and time of culture on characteristic and yield of biomass and ß(1,3)/(1,6)-glucan preparations of Candida utilis ATCC 9950 after cultivation in medium based on waste potato juice water supplemented with 10% of glycerol. After shake-flask culture, the biomass was characterized by higher protein content (app. 26.5%) compared to 19% after batch fermentation while the cultivation on a biofermentor scale promoted polysaccharides biosynthesis. The highest output of purified ß(1,3)/(1,6)-glucan preparation (5.3 gd.w./L), containing app. 85% of that polysaccharide, was found after 48 h cultivation in biofermentor. Batch fermentation promoted biosynthesis of alkali-insoluble ß(1,3)/(1,6)-glucan fraction, decreasing the content of ß(1,6)-glucan. The yield of ß(1,3)/(1,6)-glucan synthesis was 0.063 (g/g glycerol), while the productivity of that polysaccharide reached 0.094 (g/L/h). Longer batch fermentation (72 h) resulted in reduction of production efficiency of ß-glucan preparation under studied conditions. The results of the study provide a new efficient biotechnological solution to produce high-value ß-glucan preparations of C. utilis origin based on valorization of agro-waste potato juice water with glycerol.


Assuntos
Candida/metabolismo , Glicerol/metabolismo , Solanum tuberosum/metabolismo , Águas Residuárias/microbiologia , beta-Glucanas/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Biomassa , Metabolismo dos Carboidratos/fisiologia , Fermentação/fisiologia , Microbiologia Industrial/métodos
19.
3 Biotech ; 8(9): 388, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30175025

RESUMO

The study investigated the effectiveness of selenium binding from its salt solution by Candida utilis ATCC 9950 yeast biomass cultured on a medium prepared from the agro-food industry wastes, containing an available source of carbon and nitrogen. Selenium binding by C. utilis yeast strain after 48 h of culturing at 28 °C from aqueous solutions with the addition of 30 mg Se/L reached a value of 2.28 mg Se/g of yeast biomass. The kinetics of selenium binding by the yeasts showed a better fit for the pseudo-second-order kinetic model compared to the pseudo-first-order one. Accumulation stability data were analyzed using the Freundlich and Langmuir isotherm models. The presence of competing anions such as SO42- , and HPO42- at a concentration of 0.5 mM resulted in about 35% reduction of selenium binding by the examined C. utilis strain. FTIR analysis showed that sulfur compounds were involved in selenium biosorption by the yeast. Compounds containing ammonium groups appeared to be very important for selenium binding. The results of the study demonstrated that the yeast can be used to effectively bind selenium from aqueous solution. At the same time, it gives the opportunity to obtain a biomass rich in this deficient element, which can also be used in dietary supplement production.

20.
J Biotechnol ; 281: 1-10, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885339

RESUMO

Changes in cell wall structure of four strains of Sacccharomyces cerevisiae species (brewer's, baker's and probiotic yeast) after culturing on deproteinated potato juice water (DPJW) with diverse addition of glycerol and different pH were investigated. It allowed to select conditions intensifying biosynthesis of ß(1,3)/(1,6)-glucan and mannoproteins of cell walls of tested strains. Yeast cell wall structural polysaccharides show biological activity and technological usability in food industry but also decide about therapeutic properties of yeast biomass. The highest increase in the thickness of walls (by about 100%) and ß-glucan layer (by about 120%) was stated after cultivation of S. cerevisiae R9 brewer's yeast in DPJW supplemented with 5 and 10% (w/v) of glycerol and pH 7.0 while S. cerevisiae var. boulardi PAN yeast synthesized by ab. 70% thicker ß-glucan layer when the pH of growth medium was equal to 5.0. The cells of brewer's yeast (S. cerevisiae R9), probiotic (S. cerevisiae CNCM 1-745) and baker's (S. cerevisiae 102) intensified the ratio of mannoproteins in the structure of cell walls cultivated in mediums supplemented with above 15% of glycerol what point out the protective action of glycoprotein's under osmotic stress conditions. The study confirms at the first time the possibility of using agro-industrial waste in biosynthesis of functional polysaccharides of S. cerevisiae cell wall. It could be an new advantage in production of yeast biomass with therapeutic properties or ß-glucan preparation as a novel food ingredient.


Assuntos
Parede Celular/metabolismo , Glicerol/metabolismo , Resíduos Industriais , Saccharomyces cerevisiae/metabolismo , Solanum tuberosum , beta-Glucanas/metabolismo , Indústria Alimentícia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Gerenciamento de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...