Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 10: 1607, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379663

RESUMO

Verbal fluency refers to the ability to generate words quickly and efficiently according to predefined phonological or semantic criteria. Deficits in verbal fluency limit patients' ability to communicate effectively and to function well in social setups. Multiple sclerosis (MS) patients suffer from various cognitive impairments, and some of them experience language deficits as well. The goal of this study is to examine the contribution of the dorsal and ventral language pathways to verbal fluency in MS patients. All patients (N = 33) underwent diffusion MRI (dMRI) and fluency measurements. Diffusion parameters were calculated along dorsal and ventral language-related pathways and their right-hemispheric homologs, identified individually in each patient. Significant correlations were found between fluency measures and mean fractional anisotropy (FA) in several pathways, including the left fronto-temporal arcuate fasciculus (AFft), bilateral inferior fronto-occipital fasciculus (IFOF), and bilateral frontal aslant tract. Along-tract correlations revealed a more selective pattern of associations: letter-based fluency was associated with FA in a segment of the left AFft (dorsal pathway), while category-based fluency was associated with FA in a segment of the right IFOF (ventral pathway). The observed pattern of associations, mapping letter-based fluency to the dorsal stream and category-based fluency to the ventral stream, fits well within the dual stream framework of language processing. Further studies will be necessary to assess whether these associations generalize to the typical adult population or whether they are tied to the clinical state.

2.
Cerebellum ; 18(3): 372-387, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30637673

RESUMO

Cerebellum-cerebrum connections are essential for many motor and cognitive functions and cerebellar disorders are prevalent in childhood. The middle (MCP), inferior (ICP), and superior cerebellar peduncles (SCP) are the major white matter pathways that permit communication between the cerebellum and the cerebrum. Knowledge about the microstructural properties of these cerebellar peduncles across childhood is limited. Here, we report on a diffusion magnetic resonance imaging tractography study to describe age-dependent characteristics of the cerebellar peduncles in a cross-sectional sample of infants, children, and adolescents from newborn to 17 years of age (N = 113). Scans were collected as part of clinical care; participants were restricted to those whose scans showed no abnormal findings and whose history and exam had no risk factors for cerebellar abnormalities. A novel automated tractography protocol was applied. Results showed that mean tract-FA increased, while mean tract-MD decreased from infancy to adolescence in all peduncles. Rapid changes were observed in both diffusion measures in the first 24 months of life, followed by gradual change at older ages. The shape of the tract profiles was similar across ages for all peduncles. These data are the first to characterize the variability of diffusion properties both across and within cerebellar white matter pathways that occur from birth through later adolescence. The data represent a rich normative data set against which white matter alterations seen in children with posterior fossa conditions can be compared. Ultimately, the data will facilitate the identification of sensitive biomarkers of cerebellar abnormalities.


Assuntos
Pedúnculo Cerebelar Médio/crescimento & desenvolvimento , Substância Branca/crescimento & desenvolvimento , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
3.
Neuroimage ; 138: 1-12, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27165760

RESUMO

Sensorimotor synchronization (SMS) to an external auditory rhythm is a developed ability in humans, particularly evident in dancing and singing. This ability is typically measured in the lab via a simple task of finger tapping to an auditory beat. While simplistic, there is some evidence that poor performance on this task could be related to impaired phonological and reading abilities in children. Auditory-motor synchronization is hypothesized to rely on a tight coupling between auditory and motor neural systems, but the specific pathways that mediate this coupling have not been identified yet. In this study, we test this hypothesis and examine the contribution of fronto-temporal and callosal connections to specific measures of rhythmic synchronization. Twenty participants went through SMS and diffusion magnetic resonance imaging (dMRI) measurements. We quantified the mean asynchrony between an auditory beat and participants' finger taps, as well as the time to resynchronize (TTR) with an altered meter, and examined the correlations between these behavioral measures and diffusivity in a small set of predefined pathways. We found significant correlations between asynchrony and fractional anisotropy (FA) in the left (but not right) arcuate fasciculus and in the temporal segment of the corpus callosum. On the other hand, TTR correlated with FA in the precentral segment of the callosum. To our knowledge, this is the first demonstration that relates these particular white matter tracts with performance on an auditory-motor rhythmic synchronization task. We propose that left fronto-temporal and temporal-callosal fibers are involved in prediction and constant comparison between auditory inputs and motor commands, while inter-hemispheric connections between the motor/premotor cortices contribute to successful resynchronization of motor responses with a new external rhythm, perhaps via inhibition of tapping to the previous rhythm. Our results indicate that auditory-motor synchronization skills are associated with anatomical pathways that have been previously related to phonological awareness, thus offering a possible anatomical basis for the behavioral covariance between these abilities.


Assuntos
Percepção Auditiva/fisiologia , Corpo Caloso/fisiologia , Sincronização Cortical/fisiologia , Movimento/fisiologia , Córtex Sensório-Motor/citologia , Córtex Sensório-Motor/fisiologia , Substância Branca/citologia , Adulto , Corpo Caloso/citologia , Corpo Caloso/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/citologia , Vias Neurais/fisiologia , Estatística como Assunto , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...