Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R687-R698, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549627

RESUMO

Recently it was documented that fatiguing, high-intensity exercise resulted in a significant attenuation in maximal skeletal muscle mitochondrial respiratory capacity, potentially due to the intramuscular metabolic perturbation elicited by such intense exercise. With the utilization of intrathecal fentanyl to attenuate afferent feedback from group III/IV muscle afferents, permitting increased muscle activation and greater intramuscular metabolic disturbance, this study aimed to better elucidate the role of metabolic perturbation on mitochondrial respiratory function. Eight young, healthy males performed high-intensity cycle exercise in control (CTRL) and fentanyl-treated (FENT) conditions. Liquid chromatography-mass spectrometry and high-resolution respirometry were used to assess metabolites and mitochondrial respiratory function, respectively, pre- and postexercise in muscle biopsies from the vastus lateralis. Compared with CTRL, FENT yielded a significantly greater exercise-induced metabolic perturbation (PCr: -67% vs. -82%, Pi: 353% vs. 534%, pH: -0.22 vs. -0.31, lactate: 820% vs. 1,160%). Somewhat surprisingly, despite this greater metabolic perturbation in FENT compared with CTRL, with the only exception of respiratory control ratio (RCR) (-3% and -36%) for which the impact of FENT was significantly greater, the degree of attenuated mitochondrial respiratory capacity postexercise was not different between CTRL and FENT, respectively, as assessed by maximal respiratory flux through complex I (-15% and -33%), complex II (-36% and -23%), complex I + II (-31% and -20%), and state 3CI+CII control ratio (-24% and -39%). Although a basement effect cannot be ruled out, this failure of an augmented metabolic perturbation to extensively further attenuate mitochondrial function questions the direct role of high-intensity exercise-induced metabolite accumulation in this postexercise response.


Assuntos
Metabolismo Energético , Exercício Físico , Mitocôndrias Musculares/metabolismo , Contração Muscular , Músculo Quadríceps/metabolismo , Adulto , Analgésicos Opioides/administração & dosagem , Ciclismo , Respiração Celular , Fentanila/administração & dosagem , Voluntários Saudáveis , Humanos , Injeções Espinhais , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Músculo Quadríceps/inervação , Distribuição Aleatória , Adulto Jovem
2.
Am J Physiol Heart Circ Physiol ; 320(2): H668-H678, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306447

RESUMO

Passive leg movement (PLM) evokes a robust and predominantly nitric oxide (NO)-mediated increase in blood flow that declines with age and disease. Consequently, PLM is becoming increasingly accepted as a sensitive assessment of endothelium-mediated vascular function. However, a substantial PLM-induced hyperemic response is still evoked despite nitric oxide synthase (NOS) inhibition. Therefore, in nine young healthy men (25 ± 4 yr), this investigation aimed to determine whether the combination of two potent endothelium-dependent vasodilators, specifically prostaglandin (PG) and endothelium-derived hyperpolarizing factor (EDHF), account for the remaining hyperemic response to the two variants of PLM, PLM (60 movements) and single PLM (sPLM, 1 movement), when NOS is inhibited. The leg blood flow (LBF, Doppler ultrasound) response to PLM and sPLM following the intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA), to inhibit NOS, was compared to the combined inhibition of NOS, cyclooxygenase (COX), and cytochrome P-450 (CYP450) by l-NMMA, ketorolac tromethamine (KET), and fluconazole (FLUC), respectively. NOS inhibition attenuated the overall LBF [area under the curve (LBFAUC)] response to both PLM (control: 456 ± 194, l-NMMA: 168 ± 127 mL, P < 0.01) and sPLM (control: 185 ± 171, l-NMMA: 62 ± 31 mL, P = 0.03). The combined inhibition of NOS, COX, and CYP450 (i.e., l-NMMA+KET+FLUC) did not further attenuate the hyperemic responses to PLM (LBFAUC: 271 ± 97 mL, P > 0.05) or sPLM (LBFAUC: 72 ± 45 mL, P > 0.05). Therefore, PG and EDHF do not collectively contribute to the non-NOS-derived NO-mediated, endothelium-dependent hyperemic response to either PLM or sPLM in healthy young men. These findings add to the mounting evidence and understanding of the vasodilatory pathways assessed by the PLM and sPLM vascular function tests.NEW & NOTEWORTHY Passive leg movement (PLM) evokes a highly nitric oxide (NO)-mediated hyperemic response and may provide a novel evaluation of vascular function. The contributions of endothelium-dependent vasodilatory pathways, beyond NO and including prostaglandins and endothelium-derived hyperpolarizing factor, to the PLM-induced hyperemic response to PLM have not been evaluated. With intra-arterial drug infusion, the combined inhibition of nitric oxide synthase (NOS), cyclooxygenase, and cytochrome P-450 (CYP450) pathways did not further diminish the hyperemic response to PLM compared with NOS inhibition alone.


Assuntos
Endotélio Vascular/fisiologia , Hiperemia , Movimento , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico/metabolismo , Vasodilatação , Adulto , Fatores Biológicos/metabolismo , Velocidade do Fluxo Sanguíneo , Inibidores de Ciclo-Oxigenase/administração & dosagem , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Endotélio Vascular/metabolismo , Voluntários Saudáveis , Humanos , Infusões Intra-Arteriais , Perna (Membro) , Masculino , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Prostaglandinas/metabolismo , Fluxo Sanguíneo Regional , Transdução de Sinais , Fatores de Tempo , Adulto Jovem
3.
Nitric Oxide ; 104-105: 51-60, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979497

RESUMO

Nitric oxide synthase (NOS) inhibition with N(G)-monomethyl-l-arginine (L-NMMA) is often used to assess the role of NO in human cardiovascular function. However, the window of effect for L-NMMA on human vascular function is unknown, which is critical for designing and interpreting human-based studies. This study utilized the passive leg movement (PLM) assessment of vascular function, which is predominantly NO-mediated, in 7 young male subjects under control conditions, immediately following intra-arterial L-NMMA infusion (0.24 mg⋅dl-1⋅min-1), and at 45-60 and 90-105 min post L-NMMA infusion. The leg blood flow (LBF) and leg vascular conductance (LVC) responses to PLM, measured with Doppler ultrasound and expressed as the change from baseline to peak (ΔLBFpeak and ΔLVCpeak) and area under the curve (LBFAUC and LVCACU), were assessed. PLM-induced robust control ΔLBFpeak (1135 ± 324 ml⋅min-1) and ΔLVCpeak (10.7 ± 3.6 ml⋅min-1⋅mmHg-1) responses that were significantly attenuated (704 ± 196 ml⋅min-1 and 6.7 ± 2 ml⋅min-1⋅mmHg-1) immediately following L-NMMA infusion. Likewise, control condition PLM ΔLBFAUC (455 ± 202 ml) and ΔLVCAUC (4.0 ± 1.4 ml⋅mmHg-1) were significantly attenuated (141 ± 130 ml and 1.3 ± 1.2 ml⋅mmHg-1) immediately following L-NMMA infusion. However, by 45-60 min post L-NMMA infusion all PLM variables were not significantly different from control, and this was still the case at 90-105 min post L-NMMA infusion. These findings reveal that the potent reduction in NO bioavailability afforded by NOS inhibition with L-NMMA has a window of effect of less than 45-60 min in the human vasculature. These data are particularly important for the commonly employed approach of pharmacologically inhibiting NOS with L-NMMA in the human vasculature.


Assuntos
Inibidores Enzimáticos/farmacocinética , Óxido Nítrico Sintase/antagonistas & inibidores , ômega-N-Metilarginina/farmacocinética , Adulto , Artéria Femoral/fisiologia , Hemodinâmica/efeitos dos fármacos , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Óxido Nítrico/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fatores de Tempo , Adulto Jovem
4.
J Appl Physiol (1985) ; 129(4): 691-700, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816637

RESUMO

We examined the interactive influence of the muscle reflex (MR) and the chemoreflex (CR) on the ventilatory response to exercise. Eleven healthy subjects (5 women/6 men) completed three bouts of constant-load single-leg knee-extension exercise in a control trial and an identical trial conducted with lumbar intrathecal fentanyl to attenuate neural feedback from lower-limb group III/IV muscle afferents. The exercise during the two trials was performed while breathing ambient air ([Formula: see text] ~97%, [Formula: see text]~84 mmHg, [Formula: see text] ~32 mmHg, pH ~7.39), or under normocapnic hypoxia ([Formula: see text] ~79%, [Formula: see text] ~43 mmHg, [Formula: see text] ~33 mmHg, pH ~7.39) or normoxic hypercapnia ([Formula: see text] ~98%, [Formula: see text] ~105 mmHg, [Formula: see text] ~50 mmHg, pH ~7.26). During coactivation of the MR and the hypoxia-induced CR (O2-CR), minute ventilation (V̇e) and tidal volume (VT) were significantly greater compared with the sum of the responses to the activation of each reflex alone; there was no difference between the observed and summated responses in terms of breathing frequency (fB; P = 0.4). During coactivation of the MR and the hypercapnia-induced CR (CO2-CR), the observed ventilatory responses were similar to the summated responses of the reflexes (P ≥ 0.1). Therefore, the interaction between the MR and the O2-CR exerts a hyperadditive effect on V̇e and VT and an additive effect on fB, whereas the interaction between the MR and the CO2-CR is simply additive for all ventilatory parameters. These findings reveal that the MR:CR interaction further augments the ventilatory response to exercise in hypoxia.NEW & NOTEWORTHY Although the muscle reflex and the chemoreflex are recognized as independent feedback mechanisms regulating breathing during exercise, the ventilatory implications resulting from their interaction remain unclear. We quantified the individual and interactive effects of these reflexes during exercise and revealed differential modes of interaction. Importantly, the reflex interaction further amplifies the ventilatory response to exercise under hypoxemic conditions, highlighting a potential mechanism for optimizing arterial oxygenation in physically active humans at high altitude.


Assuntos
Exercício Físico , Hipercapnia , Feminino , Humanos , Masculino , Músculos , Reflexo , Respiração
5.
J Physiol ; 598(12): 2311-2321, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32170732

RESUMO

KEY POINTS: Although the exercise pressor reflex (EPR) and the chemoreflex (CR) are recognized for their sympathoexcitatory effect, the cardiovascular implication of their interaction remains elusive. We quantified the individual and interactive cardiovascular consequences of these reflexes during exercise and revealed various modes of interaction. The EPR and hypoxia-induced CR interaction is hyper-additive for blood pressure and heart rate (responses during co-activation of the two reflexes are greater than the summation of the responses evoked by each reflex) and hypo-additive for peripheral haemodynamics (responses during co-activation of the reflexes are smaller than the summated responses). The EPR and hypercapnia-induced CR interaction results in a simple addition of the individual responses to each reflex (i.e. additive interaction). Collectively, EPR:CR co-activation results in significant cardiovascular interactions with restriction in peripheral haemodynamics, resulting from the EPR:CR interaction in hypoxia, likely having the most crucial impact on the functional capacity of an exercising human. ABSTRACT: We investigated the interactive effect of the exercise pressor reflex (EPR) and the chemoreflex (CR) on the cardiovascular response to exercise. Eleven healthy participants (5 females) completed a total of six bouts of single-leg knee-extension exercise (60% peak work rate, 4 min each) either with or without lumbar intrathecal fentanyl to attenuate group III/IV afferent feedback from lower limbs to modify the EPR, while breathing either ambient air, normocapnic hypoxia (Sa O2 ∼79%, Pa O2 ∼43 mmHg, Pa CO2 ∼33 mmHg, pH ∼7.39), or normoxic hypercapnia (Sa O2 ∼98%, Pa O2 ∼105 mmHg, Pa CO2 ∼50 mmHg, pH ∼7.26) to modify the CR. During co-activation of the EPR and the hypoxia-induced CR (O2 -CR), mean arterial pressure and heart rate were significantly greater, whereas leg blood flow and leg vascular conductance were significantly lower than the summation of the responses evoked by each reflex alone. During co-activation of the EPR and the hypercapnia-induced CR (CO2 -CR), the haemodynamic responses were not different from the summated responses to each reflex response alone (P ≥ 0.1). Therefore, while the interaction resulting from the EPR:O2 -CR co-activation is hyper-additive for blood pressure and heart rate, and hypo-additive for peripheral haemodynamics, the interaction resulting from the EPR:CO2 -CR co-activation is simply additive for all cardiovascular parameters. Thus, EPR:CR co-activation results in significant interactions between cardiovascular reflexes, with the impact differing when the CR activation is achieved by hypoxia or hypercapnia. Since the EPR:CR co-activation with hypoxia potentiates the pressor response and restricts blood flow to contracting muscles, this interaction entails the most functional impact on an exercising human.


Assuntos
Exercício Físico , Reflexo , Pressão Sanguínea , Feminino , Humanos , Hipercapnia , Hipóxia
6.
J Physiol ; 598(1): 71-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705661

RESUMO

KEY POINTS: Exercise in patients with hypertension can be accompanied by an abnormal cardiovascular response that includes attenuated blood flow and an augmented pressor response. Endothelin-1, a very potent vasoconstrictor, is a key modulator of blood flow and pressure during in health and has been implicated as a potential cause of the dysfunction in hypertension. We assessed the role of endothelin-1, acting through endothelin A (ETA ) receptors, in modulating the central and peripheral cardiovascular responses to exercise in patients with hypertension via local antagonism of these receptors during exercise. ETA receptor antagonism markedly increased leg blood flow, vascular conductance, oxygen delivery, and oxygen consumption during exercise; interestingly, these changes occurred in the presence of reduced leg perfusion pressure, indicating that these augmentations were driven by changes in vascular resistance. These data indicate that ETA receptor antagonism could be a viable therapeutic approach to improve blood flow during exercise in hypertension. ABSTRACT: Patients with hypertension can exhibit impaired muscle blood flow and exaggerated increases in blood pressure during exercise. While endothelin (ET)-1 plays a role in regulating blood flow and pressure during exercise in health, little is known about the role of ET-1 in the cardiovascular response to exercise in hypertension. Therefore, eight volunteers diagnosed with hypertension were studied during exercise with either saline or BQ-123 (ETA receptor antagonist) infusion following a 2-week withdrawal of anti-hypertensive medications. The common femoral artery and vein were catheterized for drug infusion, blood collection and blood pressure measurements, and leg blood flow was measured by Doppler ultrasound. Patients exercised at both absolute (0, 5, 10, 15 W) and relative (40, 60, 80% peak power) intensities. BQ-123 increased blood flow at rest (79 ± 87 ml/min; P = 0.03) and augmented the exercise-induced hyperaemia at most intensities (80% saline: Δ3818±1222 vs. BQ-123: Δ4812±1469 ml/min; P = 0.001). BQ-123 reduced leg MAP at rest (-8 ± 4 mmHg; P < 0.001) and lower intensities (0-10 W; P < 0.05). Systemic diastolic blood pressure was reduced (0 W, 40%; P < 0.05), but systemic MAP was defended by an increased cardiac output. The exercise pressor response (ΔMAP) did not differ between conditions (80% saline: 25 ± 10, BQ-123: 30 ± 7 mmHg; P = 0.17). Thus, ET-1, acting through the ETA receptors, contributes to the control of blood pressure at rest and lower intensity exercise in these patients. Furthermore, the finding that ET-1 constrains the blood flow response to exercise suggests that ETA receptor antagonism could be a therapeutic approach to improve blood flow during exercise in hypertension.


Assuntos
Exercício Físico , Hipertensão/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Receptor de Endotelina A/fisiologia , Fluxo Sanguíneo Regional , Pressão Sanguínea , Antagonistas dos Receptores de Endotelina/farmacologia , Endotelina-1/fisiologia , Humanos , Peptídeos Cíclicos/farmacologia
7.
Hypertension ; 74(6): 1468-1475, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31607174

RESUMO

We investigated the impact of hypertension on circulatory responses to exercise and the role of the exercise pressor reflex in determining the cardiovascular abnormalities characterizing patients with hypertension. After a 7-day drug washout, 8 hypertensive (mean arterial pressure [MAP] 130±4 mm Hg; 65±3 years) and 8 normotensive (MAP 117±2 mm Hg; 65±2 years) individuals performed single-leg knee-extensor exercise (7 W, 15 W, 50%, 80%-Wpeak) under control conditions and with lumbar intrathecal fentanyl impairing feedback from µ-opioid receptor-sensitive leg muscle afferents. Femoral artery blood flow (QL), MAP (femoral artery), leg vascular conductance, and changes in cardiac output were continuously measured. While the increase in MAP from rest to control exercise was significantly greater in hypertension compared with normotension, the exercise-induced increase in cardiac output was comparable between groups, and QL and leg vascular conductance responses were ≈18% and ≈32% lower in the hypertensive patients (P<0.05). The blockade-induced decreases in MAP were significantly larger during exercise in hypertensive (≈11 mm Hg) compared with normotensive (≈6 mm Hg). Afferent blockade attenuated the central hemodynamic response to exercise similarly in both groups resulting in a ≈15% lower cardiac output at each workload. With no effect in normotensive, afferent blockade significantly raised the peripheral hemodynamic response to exercise in hypertensive, resulting in ≈14% and ≈23% higher QL and leg vascular conductance during exercise. Finally, QL and MAP during fentanyl-exercise in hypertensive were comparable to that of normotensive under control conditions (P>0.2). These findings suggest that exercise pressor reflex abnormalities largely account for the exaggerated MAP response and the impaired peripheral hemodynamics during exercise in hypertension.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Anormalidades Cardiovasculares/diagnóstico , Exercício Físico/fisiologia , Hipertensão/diagnóstico , Pressorreceptores/fisiopatologia , Idoso , Pressão Arterial/fisiologia , Determinação da Pressão Arterial/métodos , Estudos de Casos e Controles , Feminino , Hemodinâmica/fisiologia , Humanos , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Valores de Referência , Fluxo Sanguíneo Regional/fisiologia , Índice de Gravidade de Doença , Volume Sistólico
9.
J Physiol ; 596(12): 2301-2314, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29644702

RESUMO

KEY POINTS: This investigation assessed the influence of group III/IV muscle afferents on small muscle mass exercise performance from a skeletal muscle bioenergetics perspective. Group III/IV muscle afferent feedback was attenuated with lumbar intrathecal fentanyl during intermittent isometric single-leg knee-extensor all-out exercise, while 31 P-MRS was used to assess skeletal muscle bioenergetics. Attenuation of group III/IV muscle afferent feedback improved exercise performance during the first minute of exercise, due to an increase in total ATP production with no change in the ATP cost of contraction. However, exercise performance was not altered during the remainder of the protocol, despite a sustained increase in total ATP production, due to an exacerbated ATP cost of contraction. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit of attenuating the muscle afferents is negated. ABSTRACT: The direct influence of group III/IV muscle afferents on exercise performance remains equivocal. Therefore, all-out intermittent isometric single-leg knee-extensor exercise and phosphorous magnetic resonance spectroscopy (31 P-MRS) were utilized to provide a high time resolution assessment of exercise performance and skeletal muscle bioenergetics in control conditions (CTRL) and with the attenuation of group III/IV muscle afferent feedback via lumbar intrathecal fentanyl (FENT). In both conditions, seven recreationally active men performed 60 maximal voluntary quadriceps contractions (MVC; 3 s contraction, 2 s relaxation), while knee-extensor force and 31 P-MRS were assessed during each MVC. The cumulative integrated force was significantly greater (8 ± 6%) in FENT than CTRL for the first minute of the all-out protocol, but was not significantly different for the second to fifth minutes. Total ATP production was significantly greater (16 ± 21%) in FENT than CTRL throughout the all-out exercise protocol, due to a significantly greater anaerobic ATP production (11 ± 13%) in FENT than CTRL with no significant difference in oxidative ATP production. The ATP cost of contraction was not significantly different between FENT and CTRL for the first minute of the all-out protocol, but was significantly greater (29 ± 34%) in FENT than in CTRL for the second to fifth minutes. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit from muscle afferent attenuation is negated.


Assuntos
Vias Aferentes/fisiologia , Metabolismo Energético , Exercício Físico , Contração Muscular , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Trifosfato de Adenosina/metabolismo , Adulto , Analgésicos Opioides/administração & dosagem , Fentanila/administração & dosagem , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos
10.
J Physiol ; 596(8): 1373-1384, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29388218

RESUMO

KEY POINTS: We investigated the contribution of group III/IV muscle afferents to carotid baroreflex resetting during electrically evoked (no central command) and voluntary (requiring central command) isometric knee extension exercise. Lumbar intrathecal fentanyl was used to attenuate the central projection of µ-opioid receptor-sensitive group III/IV leg muscle afferent feedback. Spontaneous carotid baroreflex control was assessed by loading and unloading the carotid baroreceptors with a variable pressure neck chamber. Group III/IV muscle afferents did not influence spontaneous carotid baroreflex responsiveness at rest or during exercise. Afferent feedback accounted for at least 50% of the exercise-induced increase in the carotid baroreflex blood pressure and heart rate operating points, adjustments that are critical for an appropriate cardiovascular response to exercise. These findings suggest that group III/IV muscle afferent feedback is, independent of central command, critical for the resetting of the carotid baroreflex blood pressure and heart rate operating points, but not for spontaneous baroreflex responsiveness. ABSTRACT: This study sought to comprehensively investigate the role of metabolically and mechanically sensitive group III/IV muscle afferents in carotid baroreflex responsiveness and resetting during both electrically evoked (EVO, no central command) and voluntary (VOL, requiring central command) isometric single-leg knee-extension (15% of maximal voluntary contraction; MVC) exercise. Participants (n = 8) were studied under control conditions (CTRL) and following lumbar intrathecal fentanyl injection (FENT) to inhibit µ-opioid receptor-sensitive lower limb muscle afferents. Spontaneous carotid baroreflex control of mean arterial pressure (MAP) and heart rate (HR) were assessed following rapid 5 s pulses of neck pressure (NP, +40 mmHg) or suction (NS, -60 mmHg). Resting MAP (87 ± 10 mmHg) and HR (70 ± 8 bpm) were similar between CTRL and FENT conditions (P > 0.4). In terms of spontaneous carotid baroreflex responsiveness, FENT did not alter the change in MAP or HR responses to NP (+13 ± 5 mmHg, P = 0.85; +9 ± 3 bpm; P = 0.99) or NS (-13 ± 5 mmHg, P = 0.99; -24 ± 11 bpm; P = 0.49) at rest or during either exercise protocol, which were of a remarkably similar magnitude to rest. In contrast, FENT administration reduced the exercise-induced resetting of the operating point for MAP and HR during both EVO (116 ± 10 mmHg to 100 ± 15 mmHg and 93 ± 14 bpm to 82 ± 10 bpm) and VOL (107 ± 13 mmHg to 100 ± 17 mmHg and 89 ± 10 bpm to 72 ± 10 bpm) exercise bouts. Together, these findings document that group III/IV muscle afferent feedback is critical for the resetting of the carotid baroreflex MAP and HR operating points, independent of exercise-induced changes in central command, but not for spontaneous carotid baroreflex responsiveness.


Assuntos
Barorreflexo , Pressão Sanguínea , Corpo Carotídeo/fisiologia , Exercício Físico , Frequência Cardíaca , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Adulto , Humanos , Masculino , Músculo Esquelético/inervação
11.
J Appl Physiol (1985) ; 123(6): 1468-1476, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860173

RESUMO

Broxterman RM, Trinity JD, Gifford JR, Kwon OS, Kithas AC, Hydren JR, Nelson AD, Morgan DE, Jessop JE, Bledsoe AD, Richardson RS. Single passive leg movement assessment of vascular function: contribution of nitric oxide. J Appl Physiol 123: 1468-1476, 2017. First published August 31, 2017; doi:10.1152/japplphysiol.00533.2017.-The assessment of passive leg movement (PLM)-induced leg blood flow (LBF) and vascular conductance (LVC) is a novel approach to assess vascular function that has recently been simplified to only a single PLM (sPLM), thereby increasing the clinical utility of this technique. As the physiological mechanisms mediating the robust increase in LBF and LVC with sPLM are unknown, we tested the hypothesis that nitric oxide (NO) is a major contributor to the sPLM-induced LBF and LVC response. In nine healthy men, sPLM was performed with and without NO synthase inhibition by intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA). Doppler ultrasound and femoral arterial pressure were used to determine LBF and LVC, which were characterized by the peak change (ΔLBFpeak and ΔLVCpeak) and area under the curve (LBFAUC and LVCAUC). l-NMMA significantly attenuated ΔLBFpeak [492 ± 153 (l-NMMA) vs. 719 ± 238 (control) ml/min], LBFAUC [57 ± 34 (l NMMA) vs. 147 ± 63 (control) ml], ΔLVCpeak [4.7 ± 1.1 (l-NMMA) vs. 8.0 ± 3.0 (control) ml·min-1·mmHg-1], and LVCAUC [0.5 ± 0.3 (l-NMMA) vs. 1.6 ± 0.9 (control) ml/mmHg]. The magnitude of the NO contribution to LBF and LVC was significantly correlated with the magnitude of the control responses ( r = 0.94 for ΔLBFpeak, r = 0.85 for LBFAUC, r = 0.94 for ΔLVCpeak, and r = 0.95 for LVCAUC). These data establish that the sPLM-induced hyperemic and vasodilatory response is predominantly (~65%) NO-mediated. As such, sPLM appears to be a promising, simple, in vivo assessment of NO-mediated vascular function and NO bioavailability. NEW & NOTEWORTHY Passive leg movement (PLM), a novel assessment of vascular function, has been simplified to a single PLM (sPLM), thereby increasing the clinical utility of this technique. However, the role of nitric oxide (NO) in mediating the robust sPLM hemodynamic responses is unknown. This study revealed that sPLM induces a hyperemic and vasodilatory response that is predominantly NO-mediated and, as such, appears to be a promising simple, in vivo, clinical assessment of NO-mediated vascular function and, therefore, NO bioavailability.


Assuntos
Movimento , Óxido Nítrico/fisiologia , Fluxo Sanguíneo Regional , Vasodilatação , Adulto , Pressão Arterial , Inibidores Enzimáticos/farmacologia , Hemodinâmica , Humanos , Hiperemia , Perna (Membro)/irrigação sanguínea , Masculino , Adulto Jovem , ômega-N-Metilarginina/farmacologia
12.
Med Sci Sports Exerc ; 49(12): 2404-2413, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28767527

RESUMO

PURPOSE: The purpose of this study was to investigate the role of the group III/IV muscle afferents in the bioenergetics of exercising skeletal muscle beyond constraining the magnitude of metabolic perturbation. METHODS: Eight healthy men performed intermittent isometric knee-extensor exercise to task failure at ~58% maximal voluntary contraction under control conditions (CTRL) and with lumbar intrathecal fentanyl to attenuate group III/IV leg muscle afferents (FENT). Intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4), adenosine triphosphate (ATP), and pH were determined using phosphorous magnetic resonance spectroscopy (P-MRS). RESULTS: The magnitude of metabolic perturbation was significantly greater in FENT compared with CTRL for [Pi] (37.8 ± 16.8 vs 28.6 ± 8.6 mM), [H2PO4] (24.3 ± 12.2 vs 17.9 ± 7.1 mM), and [ATP] (75.8% ± 17.5% vs 81.9% ± 15.8% of baseline), whereas there was no significant difference in [PCr] (4.5 ± 2.4 vs 4.4 ± 2.3 mM) or pH (6.51 ± 0.10 vs 6.54 ± 0.14). The rate of perturbation in [PCr], [Pi], [H2PO4], and pH was significantly faster in FENT compared with CTRL. Oxidative ATP synthesis was not significantly different between conditions. However, anaerobic ATP synthesis, through augmented creatine kinase and glycolysis reactions, was significantly greater in FENT than in CTRL, resulting in a significantly greater ATP cost of contraction (0.049 ± 0.016 vs 0.038 ± 0.010 mM·min·N). CONCLUSION: Group III/IV muscle afferents not only constrain the magnitude of perturbation in intramuscular Pi, H2PO4, and ATP during small muscle mass exercise but also seem to play a role in maintaining efficient skeletal muscle contractile function in men.


Assuntos
Trifosfato de Adenosina/biossíntese , Vias Aferentes/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Adulto , Vias Aferentes/efeitos dos fármacos , Creatina Quinase/metabolismo , Tolerância ao Exercício/fisiologia , Fentanila/antagonistas & inibidores , Fentanila/farmacologia , Glicólise/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Joelho/fisiologia , Masculino , Músculo Esquelético/efeitos dos fármacos , Percepção , Fosfatos/metabolismo , Fosfocreatina/metabolismo , Esforço Físico/fisiologia
13.
J Physiol ; 594(18): 5303-15, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27241818

RESUMO

KEY POINTS: The purpose of this study was to determine the role of group III/IV muscle afferents in limiting the endurance exercise-induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle. Lumbar intrathecal fentanyl was used to attenuate the central projection of µ-opioid receptor-sensitive locomotor muscle afferents during a 5 km cycling time trial. The findings suggest that the central projection of group III/IV muscle afferent feedback constrains voluntary neural 'drive' to working locomotor muscle and limits the exercise-induced intramuscular metabolic perturbation. Therefore, the CNS might regulate the degree of metabolic perturbation within locomotor muscle and thereby limit peripheral fatigue. It appears that the group III/IV muscle afferents are an important neural link in this regulatory mechanism, which probably serves to protect locomotor muscle from the potentially severe functional impairment as a consequence of severe intramuscular metabolic disturbance. ABSTRACT: To investigate the role of metabo- and mechanosensitive group III/IV muscle afferents in limiting the intramuscular metabolic perturbation during whole body endurance exercise, eight subjects performed 5 km cycling time trials under control conditions (CTRL) and with lumbar intrathecal fentanyl impairing lower limb muscle afferent feedback (FENT). Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Motoneuronal output was estimated through vastus lateralis surface electromyography (EMG). Exercise-induced changes in intramuscular metabolites were determined using liquid and gas chromatography-mass spectrometry. Quadriceps fatigue was quantified by pre- to post-exercise changes in potentiated quadriceps twitch torque (ΔQTsingle ) evoked by electrical femoral nerve stimulation. Although motoneuronal output was 21 ± 12% higher during FENT compared to CTRL (P < 0.05), time to complete the time trial was similar (∼8.8 min). Compared to CTRL, power output during FENT was 10 ± 4% higher in the first half of the time trial, but 11 ± 5% lower in the second half (both P < 0.01). The exercise-induced increase in intramuscular inorganic phosphate, H(+) , adenosine diphosphate, lactate and phosphocreatine depletion was 55 ± 30, 62 ± 18, 129 ± 63, 47 ± 14 (P < 0.001) and 27 ± 14% (P < 0.01) greater in FENT than CTRL. ΔQTsingle was greater following FENT than CTRL (-52 ± 2 vs -31 ± 1%, P < 0.001) and this difference was positively correlated with the difference in inorganic phosphate (r(2)  = 0.79; P < 0.01) and H(+) (r(2)  = 0.92; P < 0.01). In conclusion, during whole body exercise, group III/IV muscle afferents provide feedback to the CNS which, in turn, constrains motoneuronal output to the active skeletal muscle. This regulatory mechanism limits the exercise-induced intramuscular metabolic perturbation, preventing an abnormal homeostatic challenge and excessive peripheral fatigue.


Assuntos
Exercício Físico/fisiologia , Músculo Quadríceps/fisiologia , Adulto , Aminoácidos/sangue , Analgésicos Opioides/farmacologia , Glicemia/análise , Eletromiografia , Fentanila/farmacologia , Humanos , Injeções Espinhais , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Consumo de Oxigênio , Ventilação Pulmonar , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/inervação , Triptofano/sangue , Adulto Jovem
14.
J Hypertens ; 34(2): 266-73, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26599223

RESUMO

BACKGROUND: Both altered shear rate and endothelin-1 (ET-1) are associated with the age-related development of atherosclerosis. However, the role of ET-1, a potent endogenous vasoconstrictor, in altering shear rate in humans, especially in the atherosclerotic-prone vasculature of the leg, is unknown. Therefore, this study examined the contribution of ET-1 to the age-related alterations in common femoral artery (CFA) shear rate. METHOD: BQ-123, a specific endothelin type A (ET(A)) receptor antagonist, was infused into the CFA, and diameter and blood velocity were measured by Doppler ultrasound in young (n = 8, 24 ±â€Š2 years) and old (n = 9, 70 ±â€Š2 years) study participants. RESULTS AND CONCLUSION: The old had greater intima-media thickening in the CFA, indicative of a preatherogenic phenotype. Prior to infusion, the old study participants exhibited reduced mean shear rate (27 ±â€Š3/s) compared with the young study participants (62 ±â€Š9/s). This difference was likely driven by attenuated antegrade shear rate in the old as retrograde shear rate was similar in the young and old. Inhibition of ETA receptors, by BQ-123, increased leg blood flow in the old, but not in the young, abolishing age-related differences. Older study participants had a larger CFA (young: 0.82 ±â€Š0.03 cm, old: 0.99 ±â€Š0.03 cm) in which BQ-123 induced significant vasodilation (5.1 ±â€Š1.0%), but had no such effect in the young (-0.8 ±â€Š0.8%). Interestingly, despite the age-specific, BQ-123-induced increase in leg blood flow and CFA diameter, shear rate patterns remained largely unchanged. Therefore, ET-1, acting through the ETA receptors, exerts a powerful age-specific vasoconstriction. However, removal of this vasoconstrictor stimulus does not augment mean shear rate in the old.


Assuntos
Aterosclerose/fisiopatologia , Endotelina-1/fisiologia , Artéria Femoral/fisiopatologia , Adulto , Fatores Etários , Idoso , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Antagonistas dos Receptores de Endotelina/farmacologia , Endotélio Vascular/diagnóstico por imagem , Endotélio Vascular/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Humanos , Peptídeos Cíclicos/farmacologia , Ultrassonografia Doppler , Vasodilatação/efeitos dos fármacos , Adulto Jovem
15.
Am J Physiol Heart Circ Physiol ; 309(9): H1479-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26386110

RESUMO

We investigated the influence of aging on the group III/IV muscle afferents in the exercise pressor reflex-mediated cardiovascular response to rhythmic exercise. Nine old (OLD; 68 ± 2 yr) and nine young (YNG; 24 ± 2 yr) males performed single-leg knee extensor exercise (15 W, 30 W, 80% max) under control conditions and with lumbar intrathecal fentanyl impairing feedback from group III/IV leg muscle afferents. Mean arterial pressure (MAP), cardiac output, leg blood flow (QL), systemic (SVC) and leg vascular conductance (LVC) were continuously determined. With no hemodynamic effect at rest, fentanyl blockade during exercise attenuated both cardiac output and QL ∼17% in YNG, while the decrease in cardiac output in OLD (∼5%) was significantly smaller with no impact on QL (P = 0.8). Therefore, in the face of similar significant ∼7% reduction in MAP during exercise with fentanyl blockade in both groups, LVC significantly increased ∼11% in OLD, but decreased ∼8% in YNG. The opposing direction of change was reflected in SVC with a significant ∼5% increase in OLD and a ∼12% decrease in YNG. Thus while cardiac output seems to account for the majority of group III/IV-mediated MAP responses in YNG, the impact of neural feedback on the heart may decrease with age and alterations in SVC become more prominent in mediating the similar exercise pressor reflex in OLD. Interestingly, in terms of peripheral hemodynamics, while group III/IV-mediated feedback plays a clear role in increasing LVC during exercise in the YNG, these afferents seem to actually reduce LVC in OLD. These peripheral findings may help explain the limited exercise-induced peripheral vasodilation often associated with aging.


Assuntos
Envelhecimento/fisiologia , Sistema Nervoso Autônomo/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Sistema Cardiovascular/inervação , Contração Muscular/fisiologia , Músculo Quadríceps/fisiologia , Reflexo/fisiologia , Adulto , Idoso , Analgésicos Opioides/farmacologia , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Sistema Nervoso Autônomo/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Débito Cardíaco/fisiologia , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiologia , Fentanila/farmacologia , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Músculo Esquelético/fisiologia , Músculo Quadríceps/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Adulto Jovem
16.
Am J Physiol Heart Circ Physiol ; 309(5): H977-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26188020

RESUMO

The consequence of elevated oxidative stress on exercising skeletal muscle blood flow as well as the transport and utilization of O2 in patients with chronic obstructive pulmonary disease (COPD) is not well understood. The present study examined the impact of an oral antioxidant cocktail (AOC) on leg blood flow (LBF) and O2 consumption during dynamic exercise in 16 patients with COPD and 16 healthy subjects. Subjects performed submaximal (3, 6, and 9 W) single-leg knee extensor exercise while LBF (Doppler ultrasound), mean arterial blood pressure, leg vascular conductance, arterial O2 saturation, leg arterial-venous O2 difference, and leg O2 consumption (direct Fick) were evaluated under control conditions and after AOC administration. AOC administration increased LBF (3 W: 1,604 ± 100 vs. 1,798 ± 128 ml/min, 6 W: 1,832 ± 109 vs. 1,992 ± 120 ml/min, and 9W: 2,035 ± 114 vs. 2,187 ± 136 ml/min, P < 0.05, control vs. AOC, respectively), leg vascular conductance, and leg O2 consumption (3 W: 173 ± 12 vs. 210 ± 15 ml O2/min, 6 W: 217 ± 14 vs. 237 ± 15 ml O2/min, and 9 W: 244 ± 16 vs 260 ± 18 ml O2/min, P < 0.05, control vs. AOC, respectively) during exercise in COPD, whereas no effect was observed in healthy subjects. In addition, the AOC afforded a small, but significant, improvement in arterial O2 saturation only in patients with COPD. Thus, these data demonstrate a novel beneficial role of AOC administration on exercising LBF, O2 consumption, and arterial O2 saturation in patients with COPD, implicating oxidative stress as a potential therapeutic target for impaired exercise capacity in this population.


Assuntos
Antioxidantes/uso terapêutico , Exercício Físico , Perna (Membro)/irrigação sanguínea , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fluxo Sanguíneo Regional , Administração Oral , Idoso , Antioxidantes/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
17.
J Gerontol A Biol Sci Med Sci ; 70(5): 554-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24821105

RESUMO

The endothelin-1 vasoconstrictor pathway contributes to age-related elevations in resting peripheral vascular tone primarily through activation of the endothelin subtype A (ET(A)) receptor. However, the regulatory influence of ET(A)-mediated vasoconstriction during exercise in the elderly is unknown. Thus, in 17 healthy volunteers (n = 8 young, 24±2 years; n = 9 old, 70±2 years), we examined leg blood flow, mean arterial pressure, leg arterial-venous oxygen (O2) difference, and leg O2 consumption (VO2) at rest and during knee-extensor exercise before and after intra-arterial administration of the ET(A) antagonist BQ-123. During exercise, BQ-123 administration increased leg blood flow to a greater degree in the old (+29±5 mL/min/W) compared with the young (+16±3 mL/min/W). The increase in leg blood flow with BQ-123 was accompanied by an increase in leg VO2 in both groups, suggesting a reduced efficiency following ET(A) receptor blockade. Together, these findings have identified an age-related increase in ET(A)-mediated vasoconstrictor activity that persists during exercise, suggesting an important role of this pathway in the regulation of exercising skeletal muscle blood flow and maintenance of arterial blood pressure in the elderly.


Assuntos
Envelhecimento/fisiologia , Antagonistas dos Receptores de Endotelina/administração & dosagem , Exercício Físico/fisiologia , Peptídeos Cíclicos/administração & dosagem , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Idoso , Pressão Arterial/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Perna (Membro)/irrigação sanguínea , Lipídeos/sangue , Masculino , Consumo de Oxigênio/fisiologia , Adulto Jovem
18.
Am J Physiol Heart Circ Physiol ; 304(1): H162-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23103494

RESUMO

The cardiovascular response to exercise is governed by a combination of vasodilating and vasoconstricting influences that optimize exercising muscle perfusion while protecting mean arterial pressure (MAP). The degree to which endogenous endothelin (ET)-1, the body's most potent vasoconstrictor, participates in this response is unknown. Thus, in eight young (24 ± 2 yr), healthy volunteers, we examined leg blood flow, MAP, tissue oxygenation, heart rate, leg arterial-venous O(2) difference, leg O(2) consumption, pH, and net ET-1 and lactate release at rest and during knee extensor exercise (0, 5, 10, 15, 20, and 30 W) before and after an intra-arterial infusion of BQ-123 [ET subtype A (ET(A)) receptor antagonist]. At rest, BQ-123 did not evoke a change in leg blood flow or MAP. During exercise, net ET-1 release across the exercising leg increased approximately threefold. BQ-123 increased leg blood flow by ~20% across all work rates (changes of 113 ± 76, 176 ± 83, 304 ± 108, 364 ± 130, 502 ± 117, and 570 ± 178 ml/min at 0, 5, 10, 15, 20, and 30 W, respectively) and attenuated the exercise-induced increase in MAP by ~6%. The increase in leg blood flow was accompanied by a ~9% increase in leg O(2) consumption with an unchanged arterial-venous O(2) difference and deoxyhemoglobin, suggesting a decline in intramuscular efficiency after ET(A) receptor blockade. Together, these findings identify a significant role of the ET-1 pathway in the cardiovascular response to exercise, implicating vasoconstriction via the ET(A) receptor as an important mechanism for both the restraint of blood flow in the exercising limb and maintenance of MAP in healthy, young adults.


Assuntos
Pressão Arterial , Endotelina-1/metabolismo , Exercício Físico , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Vasoconstrição , Adulto , Pressão Arterial/efeitos dos fármacos , Antagonistas do Receptor de Endotelina A , Frequência Cardíaca , Humanos , Concentração de Íons de Hidrogênio , Infusões Intra-Arteriais , Ácido Láctico/metabolismo , Músculo Esquelético/efeitos dos fármacos , Consumo de Oxigênio , Peptídeos Cíclicos/administração & dosagem , Receptor de Endotelina A/metabolismo , Fluxo Sanguíneo Regional , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Adulto Jovem
19.
Ann Emerg Med ; 59(3): 159-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21831478

RESUMO

STUDY OBJECTIVES: We compare laryngoscopic quality and time to highest-grade view between a face-to-face approach with the GlideScope and traditional flexible fiber-optic laryngoscopy in awake, upright volunteers. METHODS: This was a prospective, randomized, crossover study in which we performed awake laryngoscopy under local anesthesia on 23 healthy volunteers, using both a GlideScope video laryngoscopy face-to-face technique with the blade held upside down and flexible fiber-optic laryngoscopy. Operator reports of Cormack-Lehane laryngoscopic views and video-reviewed time to highest-grade view, as well as number of attempts, were recorded. RESULTS: Ten women and 13 men participated. A grade II or better view was obtained with GlideScope video laryngoscopy in 22 of 23 (95.6%) participants and in 23 of 23 (100%) participants with flexible fiber-optic laryngoscopy (relative risk GlideScope video laryngoscopy versus flexible fiber-optic laryngoscopy 0.96; 95% confidence interval 0.88 to 1.04). Median time to highest-grade view for GlideScope video laryngoscopy was 16 seconds (interquartile range 9 to 34) versus 51 seconds (interquartile range 35 to 96) for flexible fiber-optic laryngoscopy. A distribution of interindividual differences demonstrated that GlideScope video laryngoscopy was, on average, 39 seconds faster than flexible fiber-optic laryngoscopy (95% confidence interval 0.2 to 76.9 seconds). CONCLUSION: GlideScope video laryngoscopy can be used to obtain a Cormack-Lehane grade II or better view in the majority of awake, healthy volunteers when an upright face-to-face approach is used and was slightly faster than traditional flexible fiber-optic laryngoscopy. However, flexible fiber-optic laryngoscopy may be more reliable at obtaining high-grade views of the larynx. Awake, face-to-face GlideScope use may offer an alternative approach to the difficulty airway, particularly among providers uncomfortable with flexible fiber-optic laryngoscopy.


Assuntos
Laringoscópios , Laringoscopia/instrumentação , Estudos Cross-Over , Feminino , Humanos , Laringoscopia/métodos , Masculino , Fibras Ópticas , Postura , Fatores de Tempo , Gravação em Vídeo , Cirurgia Vídeoassistida/instrumentação , Cirurgia Vídeoassistida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...