Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Clin Exp Med ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180328

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, diclofenac, ibuprofen, or celecoxib have a well-established and unquestionable role in the human therapeutic arsenal, but still new perspectives are being discovered. This review presents new anti-inflammatory mechanisms of NSAIDs action, other than the classical one, i.e., the inhibition of cyclooxygenase (COX) isoforms leading to the prostanoids synthesis blockage. Literature data show that this group of drugs can activate anti-inflammatory peroxisome proliferator-activated receptor gamma (PPARγ), inhibit pro-inflammatory nuclear factor-κB (NF-κB) activation or modulate the components of the unfolded protein response (UPR) pathway. These alternative pathways induced by NSAIDs may not only enhance their basic anti-inflammatory mechanism of action but also promote other effects of the drugs such as anti-cancer. It was also proved that neuroinflammation, with the involvement of NF-κB, PPARγ and the components of the UPR pathway has an essential impact on the development of central nervous system (CNS) diseases. Thus, it seems possible that these new molecular targets may expand the use of NSAIDs, e.g., in the treatment of cancers and/or CNS disorders.

2.
Front Microbiol ; 14: 1211447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396391

RESUMO

The intake of psychobiotic bacteria appears to be a promising adjunct to neuropsychiatric treatment, and their consumption may even be beneficial for healthy people in terms of mental functioning. The psychobiotics' mechanism of action is largely outlined by the gut-brain axis; however, it is not fully understood. Based on very recent studies, we provide compelling evidence to suggest a novel understanding of this mechanism: bacterial extracellular vesicles appear to mediate many known effects that psychobiotic bacteria exert on the brain. In this mini-review paper, we characterize the extracellular vesicles derived from psychobiotic bacteria to demonstrate that they can be absorbed from the gastrointestinal tract, penetrate to the brain, and carry the intracellular content to exert beneficial multidirectional action. Specifically, by regulating epigenetic factors, extracellular vesicles from psychobiotics appear to enhance expression of neurotrophic molecules, improve serotonergic neurotransmission, and likely supply astrocytes with glycolytic enzymes to favor neuroprotective mechanisms. As a result, some data suggest an antidepressant action of extracellular vesicles that originate even from taxonomically remote psychobiotic bacteria. As such, these extracellular vesicles may be regarded as postbiotics of potentially therapeutic application. The mini-review is enriched with illustrations to better introduce the complex nature of brain signaling mediated by bacterial extracellular vesicles and indicates knowledge gaps that require scientific exploration before further progress is made. In conclusion, bacterial extracellular vesicles appear to represent the missing piece of the puzzle in the mechanism of action of psychobiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...