Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 41(52): 7663-7670, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38007341

RESUMO

Solid organ transplant recipients (SOTR) commonly develop an unsatisfactory humoral response to vaccines compared to immunocompetent individuals (IC). We have previously evaluated the humoral response in liver transplant recipients (LTR) who received two-dose vaccines against SARS-CoV-2 and reported that 38 % of LTR did not produce anti-Spike antibodies. Thus, we set out to evaluate the humoral response after the third dose of SARS-CoV-2 vaccines. For this purpose, samples from a cohort of 81 LTR and 27 IC were extracted between 21 and 90 days after the third dose. Serology for anti-Spike IgG antibodies and neutralizing antibodies against Wuhan, Delta and Omicron variants were evaluated. We found that 73.5 % of LTR were responders for anti-Spike IgG, while all the IC mounted a measurable response. LTR who responded to the third dose showed significantly lower anti-Spike IgG levels and neutralizing antibodies than IC. We found that there is less neutralization in LTR compared to IC across all variants. Specifically, the neutralization titers in both groups decrease when encountering the Delta variant, and this decline is even more pronounced with the Omicron variant, compared to the Wuhan variant. Furthermore, we identified that the use of high doses of mycophenolate and advanced age were factors that negatively affected the development of anti-Spike IgG antibodies. Regarding vaccine regimes, the regime viral vector/mRNA/mRNA elicited significantly higher responses in LTR compared to other vaccine schemes. In addition to the recommended and necessary booster doses in this population, strategies that achieve adequate immunization should be evaluated.


Assuntos
COVID-19 , Transplante de Fígado , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , RNA Mensageiro , Transplantados , Imunoglobulina G , Anticorpos Antivirais
2.
Cell Rep ; 42(3): 112156, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36842088

RESUMO

Monocytes can differentiate into macrophages (Mo-Macs) or dendritic cells (Mo-DCs). The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the differentiation of monocytes into Mo-Macs, while the combination of GM-CSF/interleukin (IL)-4 is widely used to generate Mo-DCs for clinical applications and to study human DC biology. Here, we report that pharmacological inhibition of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) in the presence of GM-CSF and the absence of IL-4 induces monocyte differentiation into Mo-DCs. Remarkably, we find that simultaneous inhibition of PPARγ and the nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) induces the differentiation of Mo-DCs with stronger phenotypic stability, superior immunogenicity, and a transcriptional profile characterized by a strong type I interferon (IFN) signature, a lower expression of a large set of tolerogenic genes, and the differential expression of several transcription factors compared with GM-CSF/IL-4 Mo-DCs. Our findings uncover a pathway that tailors Mo-DC differentiation with potential implications in the fields of DC vaccination and cancer immunotherapy.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Monócitos , Humanos , Monócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , PPAR gama/metabolismo , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Células Dendríticas/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas
3.
Aging (Albany NY) ; 15(2): 441-458, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36640267

RESUMO

Type 2 diabetes is partly characterized by decreased ß-cell mass and function which have been linked to cellular senescence. Despite a low basal proliferative rate of adult ß-cells, they can respond to growth stimuli, but this proliferative capacity decreases with age and correlates with increased expression of senescence effector, p16Ink4a. We hypothesized that selective deletion of p16Ink4a-positive cells would enhance the proliferative capacity of the remaining ß-cells due to the elimination of the local senescence-associated secretory phenotype (SASP). We aimed to investigate the effects of p16Ink4a-positive cell removal on the mass and proliferative capacity of remaining ß-cells using INK-ATTAC mice as a transgenic model of senolysis. Clearance of p16Ink4a positive subpopulation was tested in mice of different ages, males and females, and with two different insulin resistance models: high-fat diet (HFD) and insulin receptor antagonist (S961). Clearance of p16Ink4a-positive cells did not affect the overall ß-cell mass. ß-cell proliferative capacity negatively correlated with cellular senescence load and clearance of p16Ink4a positive cells in 1-year-old HFD mice improved ß-cell function and increased proliferative capacity in a subset of animals. Single-cell sequencing revealed that the targeted p16Ink4a subpopulation of ß-cells is non-proliferative and non-SASP producing whereas additional senescent subpopulations remained contributing to continued local SASP secretion. In conclusion, deletion of p16Ink4a cells did not negatively impact beta-cell mass and blood glucose under basal and HFD conditions and proliferation was restored in a subset of HFD mice opening further therapeutic targets in the treatment of diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Feminino , Masculino , Camundongos , Animais Geneticamente Modificados , Glicemia , Senescência Celular/fisiologia , Modelos Animais de Doenças
4.
Front Immunol ; 13: 831844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720394

RESUMO

High salt (NaCl) concentrations are found in a number of tissues under physiological and pathological conditions. Here, we analyzed the effects induced by high salt on the function of human neutrophils. The culture of neutrophils in medium supplemented with high salt (50 mM NaCl) for short periods (30-120 min) inhibited the ability of conventional agonists to induce the production of IL-8 and the activation of respiratory burst. By contrast, exposure to high salt for longer periods (6-18 h) resulted in the activation of neutrophils revealed by the production of high levels of IL-8, the activation of the respiratory burst, and a marked synergistic effect on the production of TNF-α induced by LPS. Increasing osmolarity of the culture medium by the addition of sorbitol or mannitol (100 mM) was shown to be completely unable to stimulate neutrophil responses, suggesting that high sodium but not an increased osmolarity mediates the activation on neutrophils responses. A similar biphasic effect was observed when the function of monocytes was analyzed. Short term exposure to high salt suppressed IL-8 and TNF-α production induced by LPS while culture for longer periods triggered the production of IL-8 but not TNF-α in the absence of LPS stimulation. Contradictory results have been published regarding how high salt modulates neutrophil function. Our results suggest that the modulation of neutrophil function by high salt is strongly dependent on the exposure time.


Assuntos
Neutrófilos , Fator de Necrose Tumoral alfa , Humanos , Interleucina-8/farmacologia , Lipopolissacarídeos/farmacologia , Neutrófilos/patologia , Cloreto de Sódio/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
5.
J Infect Dis ; 224(4): 575-585, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398243

RESUMO

Severe coronavirus disease 2019 (COVID-19) is associated with an overactive inflammatory response mediated by macrophages. Here, we analyzed the phenotype and function of neutrophils in patients with COVID-19. We found that neutrophils from patients with severe COVID-19 express high levels of CD11b and CD66b, spontaneously produce CXCL8 and CCL2, and show a strong association with platelets. Production of CXCL8 correlated with plasma concentrations of lactate dehydrogenase and D-dimer. Whole blood assays revealed that neutrophils from patients with severe COVID-19 show a clear association with immunoglobulin G (IgG) immune complexes. Moreover, we found that sera from patients with severe disease contain high levels of immune complexes and activate neutrophils through a mechanism partially dependent on FcγRII (CD32). Interestingly, when integrated in immune complexes, anti-severe acute respiratory syndrome coronavirus 2 IgG antibodies from patients with severe COVID-19 displayed a higher proinflammatory profile compared with antibodies from patients with mild disease. Our study suggests that IgG immune complexes might promote the acquisition of an inflammatory signature by neutrophils, worsening the course of COVID-19.


Assuntos
Anticorpos Antivirais/imunologia , Complexo Antígeno-Anticorpo/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , Ativação de Neutrófilo/imunologia , Adulto , Idoso , Anticorpos Antivirais/sangue , Complexo Antígeno-Anticorpo/sangue , Antígenos CD/imunologia , Antígeno CD11b/imunologia , Moléculas de Adesão Celular/imunologia , Feminino , Proteínas Ligadas por GPI/imunologia , Humanos , Imunoglobulina G/sangue , Interleucina-8/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Receptores de IgG/imunologia , SARS-CoV-2/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...