Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35323801

RESUMO

Edible coatings are important for horticulture crops preservation and reducing food waste. Application of edible coatings followed by low-temperature storage prolongs the storability, preserves quality, and decreases the overall postharvest losses. This study evaluated the efficacy of two nanoemulsions formulae containing thyme essential oil and whey proteins as coatings for zucchini, with the purpose of extending their shelf-life. The nanoemulsions were rheologically evaluated and the formula with guar and arabic gum mix stabilizer (S) showed a better capacity to restructure after strain compared to the formulae with Tween 20 (T). The S coating material had a better capacity to integrate nanoparticles compared to T. However, when applied on zucchini, T coating was more effective in reducing weight loss showing 16% weight loss compared to 21% in S, after 42 days. At the end of storage at 10 °C, the T-coated zucchini had better firmness (p < 0.05) compared with S and both coatings were superior to control (p < 0.05). POD (peroxidase) activity was high in peel at the end of storage when also CAT (catalase) showed a sudden increase. On the 42nd day of storage, the highest enzymes activity (CAT, POD, and APX (ascorbate peroxidase)) was present in the S-coated zucchini peel. The most abundant volatile in T coating was α-pinene and 4-carene in S. Sensory analysis showed that T coating delayed the appearance of senescence while S exhibited surface cracks.

2.
Foods ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34828860

RESUMO

A bottom-up approach identifying equivalent effects of high-pressure processing (HPP-600 MPa, 20 °C, 10 min), thermal treatment (TT-70 °C, 15 min) and high pressure-mild thermal processing (HPMT-600 MPa, 50 °C, 10 min) on quality and stability of peach-strawberry puree was applied during refrigerated storage. TT and HPP ensured 3-log aerobic bacteria inactivation at first, while HPMT reduction was below the detection limit. After 21 days all samples had equivalent microbiological stability. A 2.6-fold increase in the residual activity of PPO and POD was found in the HPP sample compared to TT and HPMT samples (1st day); after 21 days PPO, POD and TPC were equivalent for TT and HPP peach-strawberry purees. Equivalent volatile profile and rheology behavior was observed after 21 days of all samples' storage. Meanwhile, the color of the HPP, TT and HMPT samples remained significantly different (p < 0.05) throughout the whole storage period, with the lowest browning index registered for HPP samples.

3.
Foods ; 9(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630028

RESUMO

Application of high pressure-thermal treatment (600 MPa and 70 °C, 20 min) for obtaining edible films functionalized with thyme extracts have been studied in order to evaluate the antimicrobial capacity of films structure to retain and release the bioactive compounds. The high pressure-thermally treated films (HPT) were compared with the thermally treated (TT) ones (80 ± 0.5 °C, 35 min). The film structures were analyzed and the sorption isotherms, water vapor permeability, antimicrobial activity and the volatile fingerprints by GC/MS were performed. The HPT film presented more binding sites for water chemi-sorption than TT films and displayed significantly lower WVP than TT films (p < 0.05). TT films displayed slightly, but significant higher, antimicrobial activity (p < 0.05) against Geotrichum candidum in the first day and against Bacillus subtilis in the 10th day of storage. The HPT film structure had ~1.5-fold higher capacity to retain volatiles after drying compared to TT films. From the HPT films higher amount of p-cymene and α-terpinene was volatilized during 10 days of storage at 25 °C, 50% RH while from the TT films higher amount of caryophyllene and carvacrol were released. During storage HPT films had a 2-fold lower capacity to retain monoterpenes compared to TT films.

4.
J Biosci Bioeng ; 116(6): 697-705, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23838012

RESUMO

Ethanol is a chemical stress factor that inhibits cellular growth and determines metabolic changes leading to reduction of cell viability during fermentation and yeast storage. To determine the effect of time, temperature and ethanol during storage of brewing yeasts we have monitored viability of cells stored for 72 h, at 6 °C or 12 °C, in the presence of various ethanol concentrations. Under the conditions tested, 6 °C is the most favourable temperature to store brewing yeast creams emphasizing the importance of a tight temperature control in the storage vessels. Because W210 is less resistant to storage in the presence of ethanol than W34/70, the optimal storage parameters obtained under our laboratory conditions vary significantly. The ale strain is sensitive to storage under ethanol concentrations higher than 5% (v/v) for more than 48 h at 6 °C whereas at the same temperature the lager strain tolerates ethanol up to 7.5% (v/v) for 72 h. Also, the viability assays indicate that the antioxidant protein Yap1 is an important factor to storage resistance of BY4741 laboratory strain. To investigate the molecular mechanisms underlying tolerance of brewing yeast strains to ethanol, we have performed phenotypic analysis, localization studies and have monitored the activation of antioxidant and protection genes as well as the intracellular contents of glycogen and trehalose. Overall, our data suggest that the ale strain W210 has a defective antioxidant defence system and that ethanol may induce the antioxidant defences as well as glycogen and trehalose protection mechanisms in laboratory and brewing yeast strains.


Assuntos
Cerveja/microbiologia , Etanol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Antioxidantes/metabolismo , Fermentação , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trealose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA