Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Biol ; 3(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38405579

RESUMO

The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.

2.
J Extracell Vesicles ; 12(8): e12348, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489102

RESUMO

Extracellular vesicles (EVs) are increasingly gaining interest as biomarkers and therapeutics. Accurate sizing and quantification of EVs remain problematic, given their nanometre size range and small scattering cross-sections. This is compounded by the fact that common EV isolation methods result in co-isolation of particles with comparable features. Especially in blood plasma, similarly-sized lipoproteins outnumber EVs to a great extent. Recently, interferometric nanoparticle tracking analysis (iNTA) was introduced as a particle analysis method that enables determining the size and refractive index of nanoparticles with high sensitivity and precision. In this work, we apply iNTA to differentiate between EVs and lipoproteins, and compare its performance to conventional nanoparticle tracking analysis (NTA). We show that iNTA can accurately quantify EVs in artificial EV-lipoprotein mixtures and in plasma-derived EV samples of varying complexity. Conventional NTA could not report on EV numbers, as it was not able to distinguish EVs from lipoproteins. iNTA has the potential to become a new standard for label-free EV characterization in suspension.


Assuntos
Vesículas Extracelulares , Nanopartículas , Lipoproteínas , Plasma , Biomarcadores
3.
Nat Methods ; 19(5): 586-593, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534632

RESUMO

Characterization of the size and material properties of particles in liquid suspensions is in very high demand, for example, in the analysis of colloidal samples or of bodily fluids such as urine or blood plasma. However, existing methods are limited in their ability to decipher the constituents of realistic samples. Here we introduce iNTA as a new method that combines interferometric detection of scattering with nanoparticle tracking analysis to reach unprecedented sensitivity and precision in determining the size and refractive index distributions of nanoparticles in suspensions. After benchmarking iNTA with samples of colloidal gold, we present its remarkable ability to resolve the constituents of various multicomponent and polydisperse samples of known origin. Furthermore, we showcase the method by elucidating the refractive index and size distributions of extracellular vesicles from Leishmania parasites and human urine. The current performance of iNTA already enables advances in several important applications, but we also discuss possible improvements.


Assuntos
Vesículas Extracelulares , Nanopartículas , Humanos , Tamanho da Partícula , Refratometria , Suspensões
4.
J Mol Biol ; 434(2): 167383, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34863780

RESUMO

The expression of most bacterial genes commences with the binding of RNA polymerase (RNAP)-σ70 holoenzyme to the promoter DNA. This initial RNAP-promoter closed complex undergoes a series of conformational changes, including the formation of a transcription bubble on the promoter and the loading of template DNA strand into the RNAP active site; these changes lead to the catalytically active open complex (RPO) state. Recent cryo-electron microscopy studies have provided detailed structural insight on the RPO and putative intermediates on its formation pathway. Here, we employ single-molecule fluorescence microscopy to interrogate the conformational dynamics and reaction kinetics during real-time RPO formation on a consensus lac promoter. We find that the promoter opening may proceed rapidly from the closed to open conformation in a single apparent step, or may instead involve a significant intermediate between these states. The formed RPO complexes are also different with respect to their transcription bubble stability. The RNAP cleft loops, and especially the ß' rudder, stabilise the transcription bubble. The RNAP interactions with the promoter upstream sequence (beyond -35) stimulate transcription bubble nucleation and tune the reaction path towards stable forms of the RPO.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , Microscopia Crioeletrônica/métodos , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Holoenzimas/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Iniciação da Transcrição Genética , Transcrição Gênica
5.
Opt Express ; 29(7): 11070-11083, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820226

RESUMO

We introduce an image transform designed to highlight features with high degree of radial symmetry for identification and subpixel localization of particles in microscopy images. The transform is based on analyzing pixel value variations in radial and angular directions. We compare the subpixel localization performance of this algorithm to other common methods based on radial or mirror symmetry (such as fast radial symmetry transform, orientation alignment transform, XCorr, and quadrant interpolation), using both synthetic and experimentally obtained data. We find that in all cases it achieves the same or lower localization error, frequently reaching the theoretical limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...