Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(4): e0118523, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38411067

RESUMO

The genomes of 21 Pedobacter strains isolated from the European salamander Salamandra salamandra and different Madagascan frog species were sequenced using Illumina sequencing. Here, we report their draft genome sequences (~4.7-7.2 Mbp in size) to allow comparative genomics and taxonomic assignment of these strains.

2.
Emerg Infect Dis ; 29(10): 1-7, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735750

RESUMO

The world's reptiles and amphibians are experiencing dramatic and ongoing losses in biodiversity, changes that can have substantial effects on ecosystems and human health. In 2022, the first Global Amphibian and Reptile Disease Conference was held, using One Health as a guiding principle. The conference showcased knowledge on numerous reptile and amphibian pathogens from several standpoints, including epidemiology, host immune defenses, wild population effects, and mitigation. The conference also provided field experts the opportunity to discuss and identify the most urgent herpetofaunal disease research directions necessary to address current and future threats to reptile and amphibian biodiversity.


Assuntos
Ecossistema , Saúde Única , Humanos , Animais , Anfíbios , Répteis , Biodiversidade
3.
Nat Commun ; 14(1): 3270, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277333

RESUMO

Batrachochytrium salamandrivorans (Bsal) is a fungal pathogen of amphibians that is emerging in Europe and could be introduced to North America through international trade or other pathways. To evaluate the risk of Bsal invasion to amphibian biodiversity, we performed dose-response experiments on 35 North American species from 10 families, including larvae from five species. We discovered that Bsal caused infection in 74% and mortality in 35% of species tested. Both salamanders and frogs became infected and developed Bsal chytridiomycosis. Based on our host susceptibility results, environmental suitability conditions for Bsal, and geographic ranges of salamanders in the United States, predicted biodiversity loss is expected to be greatest in the Appalachian Region and along the West Coast. Indices of infection and disease susceptibility suggest that North American amphibian species span a spectrum of vulnerability to Bsal chytridiomycosis and most amphibian communities will include an assemblage of resistant, carrier, and amplification species. Predicted salamander losses could exceed 80 species in the United States and 140 species in North America.


Assuntos
Quitridiomicetos , Micoses , Humanos , Animais , Comércio , Quitridiomicetos/fisiologia , Internacionalidade , Anfíbios/microbiologia , Urodelos/microbiologia , Biodiversidade , Anuros , América do Norte/epidemiologia , Micoses/veterinária , Micoses/microbiologia
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220120, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37305906

RESUMO

The amphibian chytrid fungus, Batrachochytrium salamandrivorans (Bsal) threatens salamander biodiversity. The factors underlying Bsal susceptibility may include glucocorticoid hormones (GCs). The effects of GCs on immunity and disease susceptibility are well studied in mammals, but less is known in other groups, including salamanders. We used Notophthalmus viridescens (eastern newts) to test the hypothesis that GCs modulate salamander immunity. We first determined the dose required to elevate corticosterone (CORT; primary GC in amphibians) to physiologically relevant levels. We then measured immunity (neutrophil lymphocyte ratios, plasma bacterial killing ability (BKA), skin microbiome, splenocytes, melanomacrophage centres (MMCs)) and overall health in newts following treatment with CORT or an oil vehicle control. Treatments were repeated for a short (two treatments over 5 days) or long (18 treatments over 26 days) time period. Contrary to our predictions, most immune and health parameters were similar for CORT and oil-treated newts. Surprisingly, differences in BKA, skin microbiome and MMCs were observed between newts subjected to short- and long-term treatments, regardless of treatment type (CORT, oil vehicle). Taken together, CORT does not appear to be a major factor contributing to immunity in eastern newts, although more studies examining additional immune factors are necessary. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Assuntos
Microbiota , Notophthalmus viridescens , Animais , Corticosterona/farmacologia , Glucocorticoides , Pele , Mamíferos
5.
Anim Microbiome ; 5(1): 28, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189209

RESUMO

BACKGROUND: Our current understanding of vertebrate skin and gut microbiomes, and their vertical transmission, remains incomplete as major lineages and varied forms of parental care remain unexplored. The diverse and elaborate forms of parental care exhibited by amphibians constitute an ideal system to study microbe transmission, yet investigations of vertical transmission among frogs and salamanders have been inconclusive. In this study, we assess bacteria transmission in Herpele squalostoma, an oviparous direct-developing caecilian in which females obligately attend juveniles that feed on their mother's skin (dermatophagy). RESULTS: We used 16S rRNA amplicon-sequencing of the skin and gut of wild caught H. squalostoma individuals (males, females, including those attending juveniles) as well as environmental samples. Sourcetracker analyses revealed that juveniles obtain an important portion of their skin and gut bacteria communities from their mother. The contribution of a mother's skin to the skin and gut of her respective juveniles was much larger than that of any other bacteria source. In contrast to males and females not attending juveniles, only the skins of juveniles and their mothers were colonized by bacteria taxa Verrucomicrobiaceae, Nocardioidaceae, and Erysipelotrichaceae. In addition to providing indirect evidence for microbiome transmission linked to parental care among amphibians, our study also points to noticeable differences between the skin and gut communities of H. squalostoma and that of many frogs and salamanders, which warrants further investigation. CONCLUSION: Our study is the first to find strong support for vertical bacteria transmission attributed to parental care in a direct-developing amphibian species. This suggests that obligate parental care may promote microbiome transmission in caecilians.

6.
Front Vet Sci ; 9: 756686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310410

RESUMO

Emerging infectious wildlife diseases have caused devastating declines, particularly when pathogens have been introduced in naïve host populations. The outcome of disease emergence in any host population will be dictated by a series of factors including pathogen virulence, host susceptibility, and prior opportunity for coevolution between hosts and pathogens. Historical coevolution can lead to increased resistance in hosts and/or reduced virulence in endemic pathogens that allows stable persistence of host and pathogen populations. Adaptive coevolution may also occur on relatively short time scales following introduction of a novel pathogen. Here, we performed a meta-analysis of multi-strain Batrachochytrium dendrobatidis (Bd) infection experiments to test whether: (1) amphibian hosts exhibit lower mortality rates when infected with strains belonging to endemic Bd lineages relative to the Global Panzootic Lineage (Bd-GPL), hypothetically owing to long co-evolutionary histories between endemic Bd lineages and their amphibian hosts; and (2) amphibians exhibit lower mortality rates when infected with local Bd-GPL strains compared with non-local Bd-GPL strains, hypothetically owing to recent selection for tolerance or resistance to local Bd-GPL strains. We found that in a majority of cases, amphibians in endemic Bd treatments experienced reduced mortality relative to those in Bd-GPL treatments. Hosts presumed to have historically coexisted with endemic Bd did not show reduced mortality to Bd-GPL compared with hosts that have not historically coexisted with endemic Bd. Finally, we detected no overall difference in amphibian mortality between local and non-local Bd-GPL treatments. Taken together, our results suggest that long-term historical coexistence is associated with less disease-induced mortality potentially due to hypovirulence in endemic Bd lineages, and that more recent coexistence between amphibians and Bd-GPL has not yet resulted in reduced host susceptibility or pathogen virulence. This corroborates previous findings that Bd-GPL introduced via the global amphibian trade has a high capacity for causing disease-induced mortality.

7.
Appl Environ Microbiol ; 88(8): e0181821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35348389

RESUMO

Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.


Assuntos
Quitridiomicetos , Micoses , Animais , Bactérias/genética , Quitridiomicetos/genética , Micoses/microbiologia , Micoses/veterinária , RNA Ribossômico 16S/genética , Urodelos/microbiologia
8.
FEMS Microbiol Ecol ; 98(3)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35212765

RESUMO

Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus,andCraugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.


Assuntos
Quitridiomicetos , Microbiota , Anfíbios/microbiologia , Animais , Bactérias/genética , Resistência à Doença , Pele/microbiologia
9.
Dis Aquat Organ ; 147: 141-148, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34913442

RESUMO

The increasing study of emerging wildlife pathogens and a lack of policy or legislation regulating their translocation and use has heightened concerns about laboratory escape, species spillover, and subsequent epizootics among animal populations. Responsible self-regulation by research laboratories, in conjunction with institutional-level safeguards, has an important role in mitigating pathogen transmission and spillover, as well as potential interspecies pathogenesis. A model system in disease ecology that highlights these concerns and related amelioration efforts is research focused on amphibian emerging infectious diseases. Whereas laboratory escape of amphibian pathogens has not been reported and may be rare compared with introduction events from trade or human globalization, the threat that novel disease outbreaks with mass mortality effects pose to wild populations warrants thorough biosecurity measures to ensure containment and prevent spillover. Here, we present a case study of the laboratory biosecurity concerns for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans. We conclude that proactive biosecurity strategies are needed to integrate researcher and institutional oversight of aquatic wildlife pathogens generally, and we call for increased national and international policy and legislative enforcement. Furthermore, taking professional responsibility beyond current regulations is needed as development of legal guidance can be slow at national and international levels. We outline the need for annual laboratory risk assessments, comprehensive training for all laboratory personnel, and appropriate safeguards specific to pathogens under study. These strategies are critical for upholding the integrity and credibility of the scientific community and maintaining public support for research on wildlife diseases.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Biosseguridade , Micoses/prevenção & controle , Micoses/veterinária , Pesquisa
10.
Dis Aquat Organ ; 146: 81-89, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617514

RESUMO

Detecting and quantifying pathogens with quick, cost-efficient and sensitive methods is needed across disease systems for addressing pertinent epidemiological questions. Typical methods rely on extracting DNA from collected samples. Here we develop and test an extraction-free method from water bath samples that is both sensitive and efficient for 2 major amphibian pathogens-Batrachochytrium dendrobatidis and B. salamandrivorans. We tested mock samples with known pathogen quantities as well as comparatively assessed detection from skin swabs and water baths from field sampled amphibians. Quantitative PCR (qPCR) directly on lyophilized water baths was able to reliably detect low loads of 10 and 1 zoospores for both pathogens, and detection rates were greater than those of swabs from field samples. Further concentration of samples did not improve detection, and collection container type did not influence pathogen load estimates. This method of lyophilization (i.e. freeze-drying) followed by direct qPCR offers an effective and efficient tool from detecting amphibian pathogens, which is crucial for surveillance efforts and estimating shedding rates for robust epidemiological understanding of transmission dynamics. Furthermore, water bath samples have multiple functions and can be used to evaluate mucosal function against pathogens and characterize mucosal components. The multifunctionality of water bath samples and reduced monetary costs and time expenditures make this method an optimal tool for amphibian disease research and may also prove to be useful in other wildlife disease systems.


Assuntos
Anfíbios , Banhos , Animais , Banhos/veterinária , Água
11.
Sci Rep ; 11(1): 20493, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650115

RESUMO

Diverse communities of symbiotic microbes inhabit the digestive systems of vertebrates and play a crucial role in animal health, and host diet plays a major role in shaping the composition and diversity of these communities. Here, we characterized diet and gut microbiome of fire salamander populations from three Belgian forests. We carried out DNA metabarcoding on fecal samples, targeting eukaryotic 18S rRNA of potential dietary prey items, and bacterial 16S rRNA of the concomitant gut microbiome. Our results demonstrated an abundance of soft-bodied prey in the diet of fire salamanders, and a significant difference in the diet composition between males and females. This sex-dependent effect on diet was also reflected in the gut microbiome diversity, which is higher in males than female animals. Proximity to human activities was associated with increased intestinal pathogen loads. Collectively, the data supports a relationship between diet, environment and intestinal microbiome in fire salamanders, with potential health implications.


Assuntos
Dieta , Microbioma Gastrointestinal , Salamandra/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Carga Bacteriana , Bélgica , Fezes/microbiologia , Feminino , Atividades Humanas , Masculino , Comportamento Predatório , RNA Ribossômico 16S , Salamandra/fisiologia , Fatores Sexuais
12.
Biol Conserv ; 255: 108966, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34565805

RESUMO

The coronavirus pandemic is more fully exposing ubiquitous economic and social inequities that pervade conservation science. In this time of prolonged stress on members of the research community, primary investigators or project leaders (PLs) have a unique opportunity to adapt their programs to jointly create more equitable and productive research environments for their teams. Institutional guidance for PLs pursuing field and laboratory work centers on the physical safety of individuals while in the lab or field, but largely ignores the vast differences in how team members may be experiencing the pandemic. Strains on mental, physical, and emotional health; racial trauma; familial responsibilities; and compulsory productivity resources, such as high-speed internet, quiet work spaces, and support are unequally distributed across team members. The goal of this paper is to summarize the shifting dynamics of leadership and mentorship during the coronavirus pandemic and highlight opportunities for increasing equity in conservation research at the scale of the project team. Here, we (1) describe how the pandemic differentially manifests inequity on project teams, particularly for groups that have been structurally excluded from conservation science, (2) consider equitable career advancement during the coronavirus pandemic, and (3) offer suggestions for PLs to provide mentorship that prioritizes equity and wellbeing during and beyond the pandemic. We aim to support PLs who have power and flexibility in how they manage research, teaching, mentoring, consulting, outreach, and extension activities so that individual team members' needs are met with compassion and attention to equity.

13.
PeerJ ; 9: e11532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249488

RESUMO

Biological invasions are on the rise, with each invader carrying a plethora of associated microbes. These microbes play important, yet poorly understood, ecological roles that can include assisting the hosts in colonization and adaptation processes or as possible pathogens. Understanding how these communities differ in an invasion scenario may help to understand the host's resilience and adaptability. The Asian common toad, Duttaphrynus melanostictus is an invasive amphibian, which has recently established in Madagascar and is expected to pose numerous threats to the native ecosystems. We characterized the skin and gut bacterial communities of D. melanostictus in Toamasina (Eastern Madagascar), and compared them to those of a co-occurring native frog species, Ptychadena mascareniensis, at three sites where the toad arrived in different years. Microbial composition did not vary among sites, showing that D. melanostictus keeps a stable community across its expansion but significant differences were observed between these two amphibians. Moreover, D. melanostictus had richer and more diverse communities and also harboured a high percentage of total unique taxa (skin: 80%; gut: 52%). These differences may reflect the combination of multiple host-associated factors including microhabitat selection, skin features and dietary preferences.

14.
Ecol Evol ; 11(14): 9293-9307, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306622

RESUMO

The host-associated microbiome plays a significant role in health. However, the roles of factors such as host genetics and microbial interactions in determining microbiome diversity remain unclear. We examined these factors using amplicon-based sequencing of 175 Thoropa taophora frog skin swabs collected from a naturally fragmented landscape in southeastern Brazil. Specifically, we examined (1) the effects of geography and host genetics on microbiome diversity and structure; (2) the structure of microbial eukaryotic and bacterial co-occurrence networks; and (3) co-occurrence between microeukaryotes with bacterial OTUs known to affect growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). While bacterial alpha diversity varied by both site type and host MHC IIB genotype, microeukaryotic alpha diversity varied only by site type. However, bacteria and microeukaryote composition showed variation according to both site type and host MHC IIB genotype. Our network analysis showed the highest connectivity when both eukaryotes and bacteria were included, implying that ecological interactions may occur among domains. Lastly, anti-Bd bacteria were not broadly negatively co-associated with the fungal microbiome and were positively associated with potential amphibian parasites. Our findings emphasize the importance of considering both domains in microbiome research and suggest that for effective probiotic strategies for amphibian disease management, considering potential interactions among all members of the microbiome is crucial.

15.
PLoS Pathog ; 17(2): e1009234, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600433

RESUMO

Environmental temperature is a key factor driving various biological processes, including immune defenses and host-pathogen interactions. Here, we evaluated the effects of environmental temperature on the pathogenicity of the emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal), using controlled laboratory experiments, and measured components of host immune defense to identify regulating mechanisms. We found that adult and juvenile Notophthalmus viridescens died faster due to Bsal chytridiomycosis at 14°C than at 6 and 22°C. Pathogen replication rates, total available proteins on the skin, and microbiome composition likely drove these relationships. Temperature-dependent skin microbiome composition in our laboratory experiments matched seasonal trends in wild N. viridescens, adding validity to these results. We also found that hydrophobic peptide production after two months post-exposure to Bsal was reduced in infected animals compared to controls, perhaps due to peptide release earlier in infection or impaired granular gland function in diseased animals. Using our temperature-dependent susceptibility results, we performed a geographic analysis that revealed N. viridescens populations in the northeastern United States and southeastern Canada are at greatest risk for Bsal invasion, which shifted risk north compared to previous assessments. Our results indicate that environmental temperature will play a key role in the epidemiology of Bsal and provide evidence that temperature manipulations may be a viable disease management strategy.


Assuntos
Batrachochytrium/patogenicidade , Micoses/imunologia , Notophthalmus viridescens/imunologia , Estações do Ano , Pele/imunologia , Animais , Micoses/epidemiologia , Micoses/microbiologia , Notophthalmus viridescens/microbiologia , Pele/microbiologia , Temperatura
16.
Naturwissenschaften ; 108(1): 7, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528676

RESUMO

Gut microorganisms are crucial for many biological functions playing a pivotal role in the host's well-being. We studied gut bacterial community structure of marine iguana populations across the Galápagos archipelago. Marine iguanas depend heavily on their specialized gut microbiome for the digestion of dietary algae, a resource whose growth was strongly reduced by severe "El Niño"-related climatic fluctuations in 2015/2016. As a consequence, marine iguana populations showed signs of starvation as expressed by a poor body condition. Body condition indices (BCI) varied between island populations indicating that food resources (i.e., algae) are affected differently across the archipelago during 'El Niño' events. Though this event impacted food availability for marine iguanas, we found that reductions in body condition due to "El Niño"-related starvation did not result in differences in bacterial gut community structure. Species richness of gut microorganisms was instead correlated with levels of neutral genetic diversity in the distinct host populations. Our data suggest that marine iguana populations with a higher level of gene diversity and allelic richness may harbor a more diverse gut microbiome than those populations with lower genetic diversity. Since low values of these diversity parameters usually correlate with small census and effective population sizes, we use our results to propose a novel hypothesis according to which small and genetically less diverse host populations might be characterized by less diverse microbiomes. Whether such genetically depauperate populations may experience additional threats from reduced dietary flexibility due to a limited intestinal microbiome is currently unclear and calls for further investigation.


Assuntos
El Niño Oscilação Sul , Microbioma Gastrointestinal/fisiologia , Iguanas/microbiologia , Animais , Biodiversidade , Equador
18.
Anim Conserv ; 23(5): 533-546, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33071596

RESUMO

The emerging fungal pathogen Batrachochytrium salamandrivorans (Bsal) is a major threat to amphibian species worldwide with potential to infect many species if it invades salamander biodiversity hotspots in the Americas. Bsal can cause the disease chytridiomycosis, and it is important to assess the risk of Bsal-induced chytridiomycosis to species in North America. We evaluated the susceptibility to Bsal of the common and widespread spotted salamander, Ambystoma maculatum, across life history stages and monitored the effect of Bsal exposure on growth rate and response of the stress hormone, corticosterone. We conclude that spotted salamanders appear resistant to Bsal because they showed no indication of disease or infection, and experienced minor effects on growth upon exposure. While we focused on a single population for this study, results were consistent across conditions of exposure including high or repeated doses of Bsal, life-stage at exposure, environmental conditions including two temperatures and two substrates, and promoting pathogen infectivity by conditioning Bsal cultures with thyroid hormone. Exposure to high levels of Bsal elicited an acute but not chronic increase in corticosterone in spotted salamanders, and reduced growth. We hypothesize that the early acute increase in corticosterone facilitated mounting an immune response to the pathogen, perhaps through immunoredistribution to the skin, but further study is needed to determine immune responses to Bsal. These results will contribute to development of appropriate Bsal management plans to conserve species at risk of emerging disease.

19.
Dis Aquat Organ ; 140: 1-11, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32618283

RESUMO

Discovered in 2013, the chytrid fungus Batrachochytrium salamandrivorans (Bsal) is an emerging amphibian pathogen that causes ulcerative skin lesions and multifocal erosion. A closely related pathogen, B. dendrobatidis (Bd), has devastated amphibian populations worldwide, suggesting that Bsal poses a significant threat to global salamander biodiversity. To expedite research into this emerging threat, we seek to standardize protocols across the field so that results of laboratory studies are reproducible and comparable. We have collated data and experience from multiple labs to standardize culturing practices of Bsal. Here we outline common culture practices including a medium for standardized Bsal growth, standard culturing protocols, and a method for isolating Bsal from infected tissue.


Assuntos
Quitridiomicetos , Micoses/veterinária , Anfíbios , Animais , Biodiversidade , Urodelos
20.
Genome Biol ; 21(1): 40, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32079535

RESUMO

Following publication of the original paper [1], it was reported that an error in the processing of Fig. 8 occurred. In the online HTML version of the article, Fig. 8 was presented as a duplication of Fig. 7. The original article [1] has been corrected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...