Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712993

RESUMO

Magnetic skyrmions are topologically protected, nanoscale whirls of the spin configuration that tend to form hexagonally ordered arrays. As a topologically non-trivial structure, the nucleation and annihilation of the skyrmion, as well as the interaction between skyrmions, varies from conventional magnetic systems. Recent works have suggested that the ordering kinetics in these materials occur over millisecond or longer timescales, which is unusually slow for magnetic dynamics. The current work investigates the skyrmion ordering kinetics, particularly during lattice formation and destruction, using time-resolved small angle neutron scattering (TR-SANS). Evaluating the time-resolved structure and intensity of the neutron diffraction pattern reveals the evolving real-space structure of the skyrmion lattice and the timeframe of the formation. Measurements were performed on three prototypical skyrmion materials: MnSi, (Fe,Co)Si, and Cu2OSeO3. To probe lattice formation and destruction kinetics, the systems were prepared in the stable skyrmion state, and then a square-wave magnetic field modulation was applied. The measurements show that the skyrmions quickly form ordered domains, with a significant distribution in lattice parameters, which then converge to the final structure; the results confirm the slow kinetics, with formation times between 10 ms and 99 ms. Comparisons are made between the measured formation times and the fundamental material properties, suggesting the ordering temperature, saturation magnetization and magnetocrystalline anisotropy may be driving the timeframes. Micromagnetic simulations were also performed and support a scaling of the kinetics with sample volume, a behavior which is caused by the reconciling of misaligned domains.

2.
ACS Nano ; 17(16): 15556-15567, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556761

RESUMO

Predicting nanoparticle aggregation and attachment phenomena requires a rigorous understanding of the interplay among crystal structure, particle morphology, surface chemistry, solution conditions, and interparticle forces, yet no comprehensive picture exists. We used an integrated suite of experimental, theoretical, and simulation methods to resolve the effect of solution pH on the aggregation of boehmite nanoplatelets, a case study with important implications for the environmental management of legacy nuclear waste. Real-time observations showed that the particles attach preferentially along the (010) planes at pH 8.5 and the (101) planes at pH 11. To rationalize these results, we established the connection between key physicochemical phenomena across the relevant length scales. Starting from molecular-scale simulations of surface hydroxyl reactivity, we developed an interfacial-scale model of the corresponding electrostatic potentials, with subsequent particle-scale calculations of the resulting driving forces allowing successful prediction of the attachment modes. Finally, we scaled these phenomena to understand the collective structure at the aggregate-scale. Our results indicate that facet-specific differences in surface chemistry produce heterogeneous surface charge distributions that are coupled to particle anisotropy and shape-dependent hydrodynamic forces, to play a key role in controlling aggregation behavior.

3.
Sci Adv ; 9(21): eadf2859, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235651

RESUMO

Inspired by structural colors in avian species, various synthetic strategies have been developed to produce noniridescent, saturated colors using nanoparticle assemblies. Nanoparticle mixtures varying in particle chemistry and size have additional emergent properties that affect the color produced. For complex multicomponent systems, understanding the assembled structure and a robust optical modeling tool can empower scientists to identify structure-color relationships and fabricate designer materials with tailored color. Here, we demonstrate how we can reconstruct the assembled structure from small-angle scattering measurements using the computational reverse-engineering analysis for scattering experiments method and use the reconstructed structure in finite-difference time-domain calculations to predict color. We successfully, quantitatively predict experimentally observed color in mixtures containing strongly absorbing nanoparticles and demonstrate the influence of a single layer of segregated nanoparticles on color produced. The versatile computational approach that we present is useful for engineering synthetic materials with desired colors without laborious trial-and-error experiments.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35656844

RESUMO

Controlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures via proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and in operando neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material.

5.
Materials (Basel) ; 14(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443211

RESUMO

Topologically nontrivial spin textures host great promise for future spintronic applications. Skyrmions in particular are of burgeoning interest owing to their nanometric size, topological protection, and high mobility via ultra-low current densities. It has been previously reported through magnetic susceptibility, microscopy, and scattering techniques that Co8Zn8Mn4 forms an above room temperature triangular skyrmion lattice. Here, we report the synthesis procedure and characterization of a polycrystalline Co8Zn8Mn4 disordered bulk sample. We employ powder X-ray diffraction and backscatter Laue diffraction as characterization tools of the crystallinity of the samples, while magnetic susceptibility and Small Angle Neutron Scattering (SANS) measurements are performed to study the skyrmion phase. Magnetic susceptibility measurements show a dip anomaly in the magnetization curves, which persists over a range of approximately 305 K-315 K. SANS measurements reveal a rotationally disordered polydomain skyrmion lattice. Applying a symmetry-breaking magnetic field sequence, we were able to orient and order the previously jammed state to yield the prototypical hexagonal diffraction patterns with secondary diffraction rings. This emergence of the skyrmion order serves as a unique demonstration of the fundamental interplay of structural disorder and anisotropy in stabilizing the thermal equilibrium phase.

6.
Nanomaterials (Basel) ; 11(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34443779

RESUMO

Neutrons can be an instrument or an object in many fields of research. Major efforts all over the world are devoted to improving the intensity of neutron sources and the efficiency of neutron delivery for experimental installations. In this context, neutron reflectors play a key role because they allow significant improvement of both economy and efficiency. For slow neutrons, Detonation NanoDiamond (DND) powders provide exceptionally good reflecting performance due to the combination of enhanced coherent scattering and low neutron absorption. The enhancement is at maximum when the nanoparticle diameter is close to the neutron wavelength. Therefore, the mean nanoparticle diameter and the diameter distribution are important. In addition, DNDs show clustering, which increases their effective diameters. Here, we report on how breaking agglomerates affects clustering of DNDs and the overall reflector performance. We characterize DNDs using small-angle neutron scattering, X-ray diffraction, scanning and transmission electron microscopy, neutron activation analysis, dynamical light scattering, infra-red light spectroscopy, and others. Based on the results of these tests, we discuss the calculated size distribution of DNDs, the absolute cross-section of neutron scattering, the neutron albedo, and the neutron intensity gain for neutron traps with DND walls.

7.
Langmuir ; 37(31): 9560-9570, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34328747

RESUMO

Acetaminophen (APAP) or paracetamol, despite its wide and common use for pain and fever symptoms, shows a variety of side effects, toxic effects, and overdose effects. The most common form of toxic effects of APAP is in the liver where phosphatidylcholine is the major component of the cell membrane with additional associated functionalities. Although this is the case, the effects of APAP on pure phospholipid membranes have been largely ignored. Here, we used 1,2-di-(octadecenoyl)-sn-glycero-3-phosphocholine (DOPC), a commonly found phospholipid in mammalian cell membranes, to synthesize large unilamellar vesicles to investigate how the incorporation of APAP changes the pure lipid vesicle structure, morphology, and fluidity at different concentrations. We used a combination of dynamic light scattering, small-angle neutron and X-ray scattering (SANS, SAXS), and cryo-TEM for structural characterization, and neutron spin-echo (NSE) spectroscopy to investigate the dynamics. We showed that the incorporation of APAP in the lipid bilayer significantly impacts the spherical phospholipid self-assembly in terms of its morphology and influences the lipid content in the bilayer, causing a decrease in bending rigidity. We observe a decrease in the number of lipids per vesicle by almost 28% (0.06 wt % APAP) and 19% (0.12 wt % APAP) compared to the pure DOPC (0 wt % APAP). Our results showed that the incorporation of APAP reduces the membrane rigidity by almost 50% and changes the spherical unilamellar vesicles into much more irregularly shaped vesicles. Although the bilayer structure did not show much change when observed by SAXS, NSE and cryo-TEM results showed the lipid dynamics change with the addition of APAP in the bilayer, which causes the overall decreased membrane rigidity. A strong effect on the lipid tail motion showed that the space explored by the lipid tails increases by a factor of 1.45 (for 0.06 wt % APAP) and 1.75 (for 0.12 wt % APAP) compared to DOPC without the drug.


Assuntos
Acetaminofen , Fosfolipídeos , Acetaminofen/toxicidade , Bicamadas Lipídicas , Fosfatidilcolinas , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
ACS Nano ; 15(7): 12042-12056, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34255492

RESUMO

While the phase separation of binary mixtures of chemically different polymer-grafted nanoparticles (PGNPs) is observed to superficially resemble conventional polymer blends, the presence of a "soft" polymer-grafted layer on the inorganic core of these nanoparticles qualitatively alters the phase separation kinetics of these "nanoblends" from the typical pattern of behavior seen in polymer blends and other simple fluids. We investigate this system using a direct immersion annealing method (DIA) that allows for a facile tuning of the PGNPs phase boundary, phase separation kinetics, and the ultimate scale of phase separation after a sufficient "aging" time. In particular, by switching the DIA solvent composition from a selective one (which increases the interaction parameter according to Timmerman's rule) to an overall good solvent for both PGNP components, we can achieve rapid switchability between phase-separated and homogeneous states. Despite a relatively low and non-classical power-law coarsening exponent, the overall phase separation process is completed on a time scale on the order of a few minutes. Moreover, the roughness of the PGNP blend film saturates at a scale that is proportional to the in-plane phase separation pattern scale, as observed in previous blend and block copolymer film studies. The relatively low magnitude of the coarsening exponent n is attributed to a suppression of hydrodynamic interactions between the PGNPs. The DIA method provides a significant opportunity to control the phase separation morphology of PGNP blends by solution processing, and this method is expected to be quite useful in creating advanced materials.

9.
ACS Nano ; 15(5): 9048-9056, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33982556

RESUMO

Efficient and compact energy conversion is at the heart of the sustainable development of humanity. In this work it is demonstrated that hydrophobic flexible nanoporous materials can be used for thermal-to-mechanical energy conversion when coupled with water. In particular, a reversible nonhysteretic wetting-drying (contraction-expansion) cycle provoked by periodic temperature fluctuations was realized for water and a superhydrophobic nanoporous Cu2(tebpz) MOF (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate). A thermal-to-mechanical conversion efficiency of ∼30% was directly recorded by high-precision PVT-calorimetry, while the operational cycle was confirmed by in operando neutron scattering. The obtained results provide an alternative approach for compact energy conversion exploiting solid-liquid interfacial energy in nanoscopic flexible heterogeneous systems.

10.
J Phys Chem Lett ; 12(20): 4951-4957, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34009998

RESUMO

Negative compressibility (NC) is a phenomenon when an object expands/shrinks in at least one of its dimensions upon compression/decompression. NC is very rare and is of great interest for a number of applications. In this work a gigantic (more than one order of magnitude higher compared to the reported values) NC effect was recorded during intrusion-extrusion of a non-wetting liquid into a flexible porous structure. For this purpose, in situ high-pressure neutron scattering, intrusion-extrusion experiments, and DFT calculations were applied to a system consisting of water and a highly hydrophobic Cu2(tebpz) metal-organic framework (MOF), which upon water penetration expands in a and c directions to demonstrate NC coefficients more than order of magnitude higher compared to the highest values ever reported. The proposed approach is not limited to the materials used in this work and can be applied to achieve coefficients of negative linear compressibility of more than 103 TPa-1.

11.
Soft Matter ; 17(16): 4452-4463, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908443

RESUMO

Polymersomes frequently appear in the literature as promising candidates for a wide range of applications from targeted drug delivery to nanoreactors. From a cell mimetic point of view, it is important to understand the size and shape changes of the vesicles in the physiological environment since that can influence the drug delivery mechanism. In this work we studied the structural features of polymersomes consisting of poly(ethylene glycol)-poly(dimethylsiloxane)-poly(ethylene glycol) at the nanoscopic length scale in the presence of NaCl, which is a very common molecule in the biotic aqueous environment. We used dynamic light scattering (DLS), cryo-TEM, small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS). We observed transformation of polymersomes from spherical to elongated vesicles at low salt concentration and into multivesicular structures at high salt concentration. Model fitting analysis of SANS data indicated a reduction of vesicle radius up to 47% and from the SAXS data we observed an increase in membrane thickness up to 8% and an increase of the PDMS hydrophobic segment up to 11% indicating stretching of the membrane due to osmotic imbalance. Also, from the increase in the interlamellar repeat distance up to 98% under high salt concentrations, we concluded that the shape and structural changes observed in the polymersomes are a combined result of osmotic pressure change and ion-membrane interactions.


Assuntos
Polietilenoglicóis , Cloreto de Sódio , Interações Hidrofóbicas e Hidrofílicas , Espalhamento a Baixo Ângulo , Difração de Raios X
12.
Nano Lett ; 21(7): 2848-2853, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33759533

RESUMO

Materials or systems demonstrating negative linear compressibility (NLC), whose size increases (decreases) in at least one of their dimensions upon compression (decompression) are very rare. Materials demonstrating this effect in all their dimensions, negative volumetric compressibility (NVC), are exceptional. Here, by liquid porosimetry and in situ neutron diffraction, we show that one can achieve exceptional NLC and NVC values by nonwetting liquid intrusion in flexible porous media, namely in the ZIF-8 metal-organic framework (MOF). Atomistic simulations show that the volumetric expansion is due to the presence of liquid in the windows connecting the cavities of ZIF-8. This discovery paves the way for designing novel materials with exceptional NLC and NVC at reasonable pressures suitable for a wide range of applications.

13.
Langmuir ; 37(7): 2362-2375, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33570419

RESUMO

We investigated the influence of an n-alkyl-PEO polymer on the structure and dynamics of phospholipid vesicles. Multilayer formation and about a 9% increase in the size in vesicles were observed by cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), and small-angle neutron/X-ray scattering (SANS/SAXS). The results indicate a change in the lamellar structure of the vesicles by a partial disruption caused by polymer chains, which seems to correlate with about a 30% reduction in bending rigidity per unit bilayer, as revealed by neutron spin echo (NSE) spectroscopy. Also, a strong change in lipid tail relaxation was observed. Our results point to opportunities using synthetic polymers to control the structure and dynamics of membranes, with possible applications in technical materials and also in drug and nutraceutical delivery.


Assuntos
Fosfolipídeos , Polietilenoglicóis , Óxido de Etileno , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Methods Enzymol ; 646: 261-276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453928

RESUMO

Associating soft matter such as surfactants, polymers, proteins, and liposomes, may form structures with dimensions not readily accessible by optical methods. Scattering methods can provide detailed information about the mechanism of associative phase separation including nucleation density, size, and shape. Ultra-small angle neutron scattering, a reciprocal space method, provides sensitivity to submicron to micron-scale structures in a non-invasive manner and described in the context of nucleation and growth of dilute droplets formed by a temperature jump into the meta-stable region of polyelectrolyte complex coacervates.


Assuntos
Nêutrons , Proteínas , Polieletrólitos , Espalhamento a Baixo Ângulo , Tensoativos
15.
Langmuir ; 36(32): 9356-9367, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32672981

RESUMO

Sodium chloride (NaCl) is a very common molecule in biotic and abiotic aqueous environments. In both cases, variation of ionic strength is inevitable. In addition to the osmotic variation posed by such perturbations, the question of whether the interactions of monovalent ions Na+ and Cl-, especially with the neutral head groups of phospholipid membranes are impactful enough to change the membrane rigidity, is still not entirely understood. We investigated the dynamics of 1,2-di-(octadecenoyl)-sn-glycero-3-phosphocholine (DOPC) vesicles with zwitterionic neutral head groups in the fluid phase with increasing external salt concentration. At higher salt concentrations, we observe an increase in bending rigidity from neutron spin echo (NSE) spectroscopy and an increase in bilayer thickness from small-angle X-ray scattering (SAXS). We compared different models to distinguish membrane undulations, lipid tail motions, and the translational diffusion of the vesicles. All of the models indicate an increase in bending rigidity by a factor of 1.3-3.6. We demonstrate that even down to t > 10 ns and for Q > 0.07 Å-1, the observed NSE relaxation spectra are influenced by translational diffusion of the vesicles. For t < 5 ns, the lipid tail motion dominates the intermediate dynamic structure factor. As the salt concentration increases, this contribution diminishes. We introduced a time-dependent analysis for the bending rigidity that highlights only a limited Zilman-Granek time window in which the rigidity is physically meaningful.


Assuntos
Bicamadas Lipídicas , Cloreto de Sódio , Fosfatidilcolinas , Espalhamento a Baixo Ângulo , Difração de Raios X
16.
J Appl Crystallogr ; 53(Pt 3): 598-604, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32684874

RESUMO

Instrumentation for time-resolved small-angle neutron scattering measurements with sub-millisecond time resolution, based on Gähler's TISANE (time-involved small-angle neutron experiments) concept, is in operation at NIST's Center for Neutron Research. This implementation of the technique includes novel electronics for synchronizing the neutron pulses from high-speed counter-rotating choppers with a periodic stimulus applied to a sample. Instrumentation details are described along with measurements demonstrating the utility of the technique for elucidating the reorientation dynamics of anisometric magnetic particles.

17.
ACS Omega ; 5(17): 9892-9902, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391476

RESUMO

A lignin-graft-poly(lactic-co-glycolic) acid (PLGA) biopolymer was synthesized with two types of lignin (LGN), alkaline lignin (ALGN) and sodium lignosulfonate (SLGN), at different (A/S)LGN/PLGA ratios (1:2, 1:4, and 1:6 w/w). 1H NMR and Fourier-transform infrared spectroscopy (FT-IR) confirmed the conjugation of PLGA to LGN. The (A/S)LGN-graft-PLGA biopolymers were used to form nanodelivery systems suitable for entrapment and delivery of drugs for disease treatment. The LGN-graft-PLGA NPs were generally small (100-200 nm), increased in size with the amount of PLGA added, monodisperse, and negatively charged (-48 to -60 mV). Small-angle scattering data showed that particles feature a relatively smooth surface and a compact spherical structure with a distinct core and a shell. The core size and shell thickness varied with the LGN/PLGA ratio, and at a 1:6 ratio, the particles deviated from the core-shell structure to a complex internal structure. The newly developed (A/S)LGN-graft-PLGA NPs are proposed as a potential delivery system for applications in biopharmaceutical, food, and agricultural sectors.

18.
Carbohydr Polym ; 236: 115998, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172832

RESUMO

Starch is an attractive biomaterial given its low cost and high protein repellency, but its use in forming functional hydrogels is limited by its high viscosity and crystallinity. Herein, we demonstrate the use of fully amorphous starch nanoparticles (SNPs) as functional hydrogel building blocks that overcome these challenges. Methacrylation of SNPs enables hydrogel formation via photopolymerization, with the low viscosity of SNPs enabling facile preparation of pre-gel suspensions of up to 35 wt% SNPs relative to <10 wt% with linear starch. Small angle neutron scattering indicates a significantly different microstructure in SNP-based hydrogels compared to linear starch-based hydrogels due to the balance between inter- and intra-particle crosslinks, consistent with SNPs forming denser and stiffer hydrogels. Functionalized SNPs are highly cytocompatible at degree of substitution values <0.25 and, once gelled, can effectively repel cell adhesion. The physicochemical versatility and biological functionality of SNP-based hydrogels offer potential in various applications.

19.
Phys Rev B ; 102(13)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731841

RESUMO

Magnetic skyrmions have been the focus of intense research due to their unique qualities which result from their topological protections. Previous work on Cu2OSeO3, the only known insulating multiferroic skyrmion material, has shown that chemical substitution alters the skyrmion phase. We chemically substitute Zn, Ag, and S into powdered Cu2OSeO3 to study the effect on the magnetic phase diagram. In both the Ag and the S substitutions, we find that the skyrmion phase is stabilized over a larger temperature range, as determined via magnetometry and small-angle neutron scattering (SANS). Meanwhile, while previous magnetometry characterization suggests two high temperature skyrmion phases in the Zn-substituted sample, SANS reveals the high temperature phase to be skyrmionic while we are unable to distinguish the other from helical order. Overall, chemical substitution weakens helical and skyrmion order as inferred from neutron scattering of the q≈0.01Å-1 magnetic peak.

20.
ACS Macro Lett ; 9(9): 1218-1223, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35638636

RESUMO

A facile synthetic method was developed to prepare sub-5 nm organo-silica (oSiO2) nanoparticles through the self-condensation of atom transfer radical polymerization (ATRP)-initiator-containing silica precursors. The obtained oSiO2 nanoparticles were characterized by a combination of nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The accessibility of the surface-Br initiating sites was evaluated by the polymerization of poly(methyl methacrylate) (PMMA) ligands from the surface of the oSiO2 nanoparticles using surface-initiated atom transfer radical polymerization (SI-ATRP). The ultrasmall size, tunable composition, and ease of surface modification may render these organo-silica nanoparticle systems with built-in SI-ATRP capability an interesting alternative to conventional silica nanoparticles for functional material design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...