Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 8266, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164687

RESUMO

Resistivity changes of magnetron sputtered, amorphous Cr2AlC thin films were measured during heating in vacuum. Based on correlative X-ray diffraction, in-situ and ex-situ selected area electron diffraction measurements and differential scanning calorimetry data from literature it is evident that the resistivity changes at 552 ± 4 and 585 ± 13 °C indicate the phase transitions from amorphous to a hexagonal disordered solid solution structure and from the latter to MAX phase, respectively. We have shown that phase changes in Cr2AlC thin films can be revealed by in-situ measurements of thermally induced resistivity changes.

2.
Sci Rep ; 8(1): 15570, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349134

RESUMO

(Re0.67Al0.10)B2 and (Re0.74Al0.11)B2 solid solution as well as Re0.85B2 thin films were deposited by hybrid RF-DC magnetron sputtering. X-ray diffraction (XRD) showed that all films exhibit the ReB2 (P63/mmc) crystal structure. X-ray photoelectron spectroscopy (XPS) analyses performed on atmosphere exposed thin film surfaces suggest that ReB2 corrodes, consistent with literature, by forming perrhenic acid (HReO4) already after two days, while (Re0.74Al0.11)B2 forms a self-passivating Al-oxide layer preventing corrosion in a time period ≥ 60 days. Hence, it is evident that Al additions to ReB2 significantly increase the chemical stability during atmosphere exposure.

3.
J Phys Condens Matter ; 29(8): 085404, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28081008

RESUMO

We have systematically studied the effect of transition metal valence electron concentration (VEC) of amorphous T 0.75Y0.75B14 (a-T 0.75Y0.75B14, T = Sc, Ti, V, Y, Zr, Nb) on the elastic properties, bonding, density and electronic structure using ab initio molecular dynamics. As the transition metal VEC is increased in both periods, the bulk modulus increases linearly with molar- and mass density. This trend can be understood by a concomitant decrease in cohesive energy. T' = Ti and Zr were selected to validate the predicted data experimentally. A-Ti0.74Y0.80B14 and a-Zr0.75Y0.75B14 thin films were synthesized by high power pulsed magnetron sputtering. Chemical composition analysis revealed the presence of up to 5 at.% impurities, with O being the largest fraction. The measured Young's modulus values for a-Ti0.74Y0.80B14 (301 ± 8 GPa) and a-Zr0.75Y0.75B14 (306 ± 9 GPa) are more than 20% smaller than the predicted ones. The influence of O incorporation on the elastic properties for these selected systems was theoretically studied, exemplarily in a-Ti0.75Y0.75B12.75O1.25. Based on ab initio data, we suggest that a-Ti0.75Y0.75B14 exhibits a very dense B network, which is partly severed in a-Ti0.75Y0.75B12.75O1.25. Upon O incorporation, the average coordination number of B and the molar density decrease by 9% and 8%, respectively. Based on these data the more than 20% reduced Young's modulus obtained experimentally for films containing impurities compared to the calculated Young's modulus for a-Ti0.75Y0.75B14 (without incorporated oxygen) can be rationalized. The presence of oxygen impurities disrupts the strong B network causing a concomitant decrease in molar density and Young's modulus. Very good agreement between the measured and calculated Young's modulus values is obtained if the presence of impurities is considered in the calculations. The implications of these findings are that prediction efforts regarding the elastic properties of amorphous borides containing oxygen impurities on the at.% level are flawed without taking the presence of impurities into account.

4.
J Phys Condens Matter ; 27(11): 115501, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25730353

RESUMO

Using density functional theory, we have systematically explored the 1a and 1b vacancy filling in NbO (space group Pm-3m) with Nb and N, respectively, to design compounds with large Seebeck coefficients. The most dominating effect was identified for filling of 1b Wyckoff sites with N giving rise to a fivefold increase in the Seebeck coefficient. This may be understood based on the electronic structure. Nb d-nonmetal p hybridization induces quantum confinement and hence enables the enhancement of the Seebeck coefficient. This was validated by measuring the Seebeck coefficient of reactively sputtered thin films. At 800 °C these electrically conductive oxynitrides exhibit the Seebeck coefficient of -70 µV K(-1), which is the largest absolute value ever reported for these compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA