Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
EJNMMI Radiopharm Chem ; 8(1): 33, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870640

RESUMO

BACKGROUND: Reduced expression or impaired signalling of tropomyosin receptor kinases (Trk receptors) are found in a vast spectrum of CNS disorders. [18F]TRACK is the first PET radioligand for TrkB/C with proven in vivo brain penetration and on-target specific signal. Here we report dosimetry data for [18F]TRACK in healthy humans. 6 healthy participants (age 22-61 y, 3 female) were scanned on a General Electric Discovery PET/CT 690 scanner. [18F]TRACK was synthesized with high molar activities (Am = 250 ± 75 GBq/µmol), and a dynamic series of 12 whole-body scans were acquired after injection of 129 to 147 MBq of the tracer. Images were reconstructed with standard corrections using the manufacturer's OSEM algorithm. Tracer concentration time-activity curves (TACs) were obtained using CT-derived volumes-of-interest. Organ-specific doses and the total effective dose were estimated using the Committee on Medical Internal Radiation Dose equation for adults and tabulated Source tissue values (S values). RESULTS: Average organ absorbed dose was highest for liver and gall bladder with 6.1E-2 (± 1.06E-2) mGy/MBq and 4.6 (± 1.18E-2) mGy/MBq, respectively. Total detriment weighted effective dose EDW was 1.63E-2 ± 1.68E-3 mSv/MBq. Organ-specific TACs indicated predominantly hepatic tracer elimination. CONCLUSION: Total and organ-specific effective doses for [18F]TRACK are low and the dosimetry profile is similar to other 18F-labelled radio tracers currently used in clinical settings.

3.
J Parkinsons Dis ; 9(2): 301-313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30829619

RESUMO

BACKGROUND: Intraputamenal glial cell line-derived neurotrophic factor (GDNF), administered every 4 weeks to patients with moderately advanced Parkinson's disease, did not show significant clinical improvements against placebo at 40 weeks, although it significantly increased [18F]DOPA uptake throughout the entire putamen. OBJECTIVE: This open-label extension study explored the effects of continued (prior GDNF patients) or new (prior placebo patients) exposure to GDNF for another 40 weeks. METHODS: Using the infusion protocol of the parent study, all patients received GDNF without disclosing prior treatment allocations (GDNF or placebo). The primary outcome was the percentage change from baseline to Week 80 in the OFF state Unified Parkinson's Disease Rating Scale (UPDRS) motor score. RESULTS: All 41 parent study participants were enrolled. The primary outcome decreased by 26.7±20.7% in patients on GDNF for 80 weeks (GDNF/GDNF; N = 21) and 27.6±23.6% in patients on placebo for 40 weeks followed by GDNF for 40 weeks (placebo/GDNF, N = 20; least squares mean difference: 0.4%, 95% CI: -13.9, 14.6, p = 0.96). Secondary endpoints did not show significant differences between the groups at Week 80 either. Prespecified comparisons between GDNF/GDNF at Week 80 and placebo/GDNF at Week 40 showed significant differences for mean OFF state UPDRS motor (-9.6±6.7 vs. -3.8±4.2 points, p = 0.0108) and activities of daily living score (-6.9±5.5 vs. -1.0±3.7 points, p = 0.0003). No treatment-emergent safety concerns were identified. CONCLUSIONS: The aggregate study results, from the parent and open-label extension suggest that future testing with GDNF will likely require an 80- rather than a 40-week randomized treatment period and/or a higher dose.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Putamen/diagnóstico por imagem , Antiparkinsonianos/uso terapêutico , Di-Hidroxifenilalanina/análogos & derivados , Feminino , Radioisótopos de Flúor , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons , Putamen/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Neuroimage ; 191: 560-567, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30831313

RESUMO

Awake rat brain positron emission tomography (PET) has previously been developed to avoid the influence of anesthesia on the rat brain response. In the present work, we further the awake rat brain scanning methodology to establish simultaneous scanning of two interacting rats in a high resolution, large field of view PET scanner. Awake rat imaging methodology based on point source tracking was adapted to be used in a dedicated human brain scanner, the ECAT high resolution research tomograph (HRRT). Rats could freely run on a horizontal platform of 19.4 × 23 cm placed inside the HRRT. The developed methodology was validated using a motion resolution phantom experiment, 3 awake single rat [18F]FDG scans as well as an [18F]FDG scan of 2 interacting rats. The precision of the point source based motion tracking was 0.359 mm (standard deviation). Minor loss of spatial resolution was observed in the motion corrected reconstructions (MC) of the resolution phantom compared to the motion-free reconstructions (MF). The full-width-at-half-maximum of the phantom rods were increased by on average 0.37 mm in the MC compared to the MF. During the awake scans, extensive motion was observed with rats moving throughout the platform area. The average rat head motion speed was 1.69 cm/s. Brain regions such as hippocampus, cortex and cerebellum could be recovered in the motion corrected reconstructions. Relative regional brain uptake of MC and MF was strongly correlated (Pearson's r ranging from 0.82 to 0.95, p < 0.0001). Awake rat brain PET imaging of interacting rats was successfully implemented on the HRRT scanner. The present method allows a large range of motion throughout a large field of view as well as to image two rats simultaneously opening the way to novel rat brain PET study designs.


Assuntos
Encéfalo/fisiologia , Neuroimagem/instrumentação , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Animais , Movimento (Física) , Ratos , Vigília
5.
Brain ; 142(3): 512-525, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30808022

RESUMO

We investigated the effects of glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease, using intermittent intraputamenal convection-enhanced delivery via a skull-mounted transcutaneous port as a novel administration paradigm to potentially afford putamen-wide therapeutic delivery. This was a single-centre, randomized, double-blind, placebo-controlled trial. Patients were 35-75 years old, had motor symptoms for 5 or more years, and presented with moderate disease severity in the OFF state [Hoehn and Yahr stage 2-3 and Unified Parkinson's Disease Rating Scale motor score (part III) (UPDRS-III) between 25 and 45] and motor fluctuations. Drug delivery devices were implanted and putamenal volume coverage was required to exceed a predefined threshold at a test infusion prior to randomization. Six pilot stage patients (randomization 2:1) and 35 primary stage patients (randomization 1:1) received bilateral intraputamenal infusions of GDNF (120 µg per putamen) or placebo every 4 weeks for 40 weeks. Efficacy analyses were based on the intention-to-treat principle and included all patients randomized. The primary outcome was the percentage change from baseline to Week 40 in the OFF state (UPDRS-III). The primary analysis was limited to primary stage patients, while further analyses included all patients from both study stages. The mean OFF state UPDRS motor score decreased by 17.3 ± 17.6% in the active group and 11.8 ± 15.8% in the placebo group (least squares mean difference: -4.9%, 95% CI: -16.9, 7.1, P = 0.41). Secondary endpoints did not show significant differences between the groups either. A post hoc analysis found nine (43%) patients in the active group but no placebo patients with a large clinically important motor improvement (≥10 points) in the OFF state (P = 0.0008). 18F-DOPA PET imaging demonstrated a significantly increased uptake throughout the putamen only in the active group, ranging from 25% (left anterior putamen; P = 0.0009) to 100% (both posterior putamina; P < 0.0001). GDNF appeared to be well tolerated and safe, and no drug-related serious adverse events were reported. The study did not meet its primary endpoint. 18F-DOPA imaging, however, suggested that intermittent convection-enhanced delivery of GDNF produced a putamen-wide tissue engagement effect, overcoming prior delivery limitations. Potential reasons for not proving clinical benefit at 40 weeks are discussed.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Adulto , Idoso , Método Duplo-Cego , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Bombas de Infusão Implantáveis , Masculino , Pessoa de Meia-Idade , Neuroglia/metabolismo , Efeito Placebo , Resultado do Tratamento
6.
Phys Med Biol ; 62(11): 4406-4420, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28362640

RESUMO

Effective use of the [Formula: see text] decay chain in targeted internal radioimmunotherapy requires the retention of both [Formula: see text] and progeny isotopes at the target site. Imaging-based pharmacokinetic tests of these pharmaceuticals must therefore separately yet simultaneously image multiple isotopes that may not be colocalized despite being part of the same decay chain. This work presents feasibility studies demonstrating the ability of a microSPECT/CT scanner equipped with a high energy collimator to simultaneously image two components of the [Formula: see text] decay chain: [Formula: see text] (218 keV) and [Formula: see text] (440 keV). Image quality phantoms were used to assess the performance of two collimators for simultaneous [Formula: see text] and [Formula: see text] imaging in terms of contrast and noise. A hotrod resolution phantom containing clusters of thin rods with diameters ranging between 0.85 and 1.70 mm was used to assess resolution. To demonstrate ability to simultaneously image dynamic [Formula: see text] and [Formula: see text] activity distributions, a phantom containing a [Formula: see text] generator from [Formula: see text] was imaged. These tests were performed with two collimators, a high-energy ultra-high resolution (HEUHR) collimator and an ultra-high sensitivity (UHS) collimator. Values consistent with activity concentrations determined independently via gamma spectroscopy were observed in high activity regions of the images. In hotrod phantom images, the HEUHR collimator resolved all rods for both [Formula: see text] and [Formula: see text] images. With the UHS collimator, no rods were resolvable in [Formula: see text] images and only rods ⩾1.3 mm were resolved in [Formula: see text] images. After eluting the [Formula: see text] generator, images accurately visualized the reestablishment of transient equilibrium of the [Formula: see text] decay chain. The feasibility of evaluating the pharmacokinetics of the [Formula: see text] decay chain in vivo has been demonstrated. This presented method requires the use of a high-performance high-energy collimator.


Assuntos
Actínio/metabolismo , Imagens de Fantasmas , Cintilografia/métodos , Compostos Radiofarmacêuticos/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador/métodos
7.
Neuroimage Clin ; 12: e1-e9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27995072

RESUMO

Dopamine transporter (DAT) SPECT imaging is increasingly utilized for diagnostic purposes in suspected Parkinsonian syndromes. We performed a cross-sectional study to investigate whether assessment of texture in DAT SPECT radiotracer uptake enables enhanced correlations with severity of motor and cognitive symptoms in Parkinson's disease (PD), with the long-term goal of enabling clinical utility of DAT SPECT imaging, beyond standard diagnostic tasks, to tracking of progression in PD. Quantitative analysis in routine DAT SPECT imaging, if performed at all, has been restricted to assessment of mean regional uptake. We applied a framework wherein textural features were extracted from the images. Notably, the framework did not require registration to a common template, and worked in the subject-native space. Image analysis included registration of SPECT images onto corresponding MRI images, automatic region-of-interest (ROI) extraction on the MRI images, followed by computation of Haralick texture features. We analyzed 141 subjects from the Parkinson's Progressive Marker Initiative (PPMI) database, including 85 PD and 56 healthy controls (HC) (baseline scans with accompanying 3 T MRI images). We performed univariate and multivariate regression analyses between the quantitative metrics and different clinical measures, namely (i) the UPDRS (part III - motor) score, disease duration as measured from (ii) time of diagnosis (DD-diag.) and (iii) time of appearance of symptoms (DD-sympt.), as well as (iv) the Montreal Cognitive Assessment (MoCA) score. For conventional mean uptake analysis in the putamen, we showed significant correlations with clinical measures only when both HC and PD were included (Pearson correlation r = - 0.74, p-value < 0.001). However, this was not significant when applied to PD subjects only (r = - 0.19, p-value = 0.084), and no such correlations were observed in the caudate. By contrast, for the PD subjects, significant correlations were observed in the caudate when including texture metrics, with (i) UPDRS (p-values < 0.01), (ii) DD-diag. (p-values < 0.001), (iii) DD-sympt (p-values < 0.05), and (iv) MoCA (p-values < 0.01), while no correlations were observed for conventional analysis (p-values = 0.94, 0.34, 0.88 and 0.96, respectively). Our results demonstrated the ability to capture valuable information using advanced texture metrics from striatal DAT SPECT, enabling significant correlations of striatal DAT binding with clinical, motor and cognitive outcomes, and suggesting that textural features hold potential as biomarkers of PD severity and progression.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Doença de Parkinson/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Idoso , Análise de Variância , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Nortropanos/farmacocinética , Escalas de Graduação Psiquiátrica , Compostos Radiofarmacêuticos
8.
J Nucl Med ; 55(8): 1368-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24904110

RESUMO

UNLABELLED: PET imaging of rodents is increasingly used in preclinical research, but its utility is limited by spatial resolution and signal-to-noise ratio of the images. A recently developed preclinical PET system uses a clustered-pinhole collimator, enabling high-resolution, simultaneous imaging of PET and SPECT tracers. Pinhole collimation strongly departs from traditional electronic collimation achieved via coincidence detection in PET. We investigated the potential of such a design by direct comparison to a traditional PET scanner. METHODS: Two small-animal PET scanners, 1 with electronic collimation and 1 with physical collimation using clustered pinholes, were used to acquire data from Jaszczak (hot rod) and uniform phantoms. Mouse brain imaging using (18)F-FDG PET was performed on each system and compared with quantitative ex vivo autoradiography as a gold standard. Bone imaging using (18)F-NaF allowed comparison of imaging in the mouse body. Images were visually and quantitatively compared using measures of contrast and noise. RESULTS: Pinhole PET resolved the smallest rods (diameter, 0.85 mm) in the Jaszczak phantom, whereas the coincidence system resolved 1.1-mm-diameter rods. Contrast-to-noise ratios were better for pinhole PET when imaging small rods (<1.1 mm) for a wide range of activity levels, but this reversed for larger rods. Image uniformity on the coincidence system (<3%) was superior to that on the pinhole system (5%). The high (18)F-FDG uptake in the striatum of the mouse brain was fully resolved using the pinhole system, with contrast to nearby regions equaling that from autoradiography; a lower contrast was found using the coincidence PET system. For short-duration images (low-count), the coincidence system was superior. CONCLUSION: In the cases for which small regions need to be resolved in scans with reasonably high activity or reasonably long scan times, a first-generation clustered-pinhole system can provide image quality in terms of resolution, contrast, and the contrast-to-noise ratio superior to a traditional PET system.


Assuntos
Tomografia por Emissão de Pósitrons/instrumentação , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Imagens de Fantasmas , Razão Sinal-Ruído
9.
Med Phys ; 39(8): 5073-83, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22894433

RESUMO

PURPOSE: The Siemens ECAT high resolution research tomograph (HRRT) is a dedicated human brain PET camera with a 6% absolute sensitivity and a (2.3 mm)(3) spatial resolution, improving to (1.8 mm)(3) when point spread function (PSF) modeling algorithms are used. These values are very close to those of dedicated small animal PET cameras such as the Siemens microPET FOCUS 120 (F120). The larger axial and transaxial field of view of the HRRT compared to the F120 allows, in principle, for simultaneous imaging of several rodents thus potentially reducing scanning costs and time. This study investigates the feasibility of using the HRRT for quantitative small animal brain studies. METHODS: We compare, in terms of magnitude, reproducibility, and asymmetry, the nondisplaceable tissue input binding potentials (BP(ND)) in the striata obtained from [(11)C]methylphenidate scans of the same rats imaged on both the F120 and the HRRT. The animal studies are complemented by a phantom study aimed at investigating noise properties relevant to the size of typical regions of interest used in rat brain image analysis. RESULTS: (i) The BP(ND) values obtained from HRRT data are lower than those obtained on the F120 by 38% when PSF modeling is not used, while they are 7% higher with PSF modeling. (ii) The within animal reproducibility on the HRRT is 18% without PSF modeling, worse than the 6% reproducibility on the F120, and is even further degraded to a value of 27% with the use of PSF modeling. (iii) The asymmetry between the left and right striatum in healthy rats worsens from 4.7% in the F120 images to 7.8% in the HRRT images reconstructed without PSF modeling, and is even worse with a value of 14.8% when PSF modeling is used. (iv) Overshooting artifacts and clumpiness in the noise structure of the HRRT images reconstructed with PSF modeling are clearly visible. CONCLUSIONS: The spatial resolution achieved on the HRRT without the use of resolution recovery techniques is not sufficient to allow for reliable quantitative small animal brain imaging. While PSF modeling in the reconstruction of the HRRT images in principle improves the resolution close to the level of the F120, it also introduces small scale nonuniformity artifacts and overshooting artifacts which preclude reliable quantitative small animal brain imaging on the HRRT.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Artefatos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Metilfenidato/química , Distribuição Normal , Imagens de Fantasmas , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
10.
J Nucl Med ; 53(8): 1300-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22699999

RESUMO

UNLABELLED: The National Electrical Manufacturers Association (NEMA) standard NU 4-2008 for performance measurements of small-animal tomographs was recently published. Before this standard, there were no standard testing procedures for preclinical PET systems, and manufacturers could not provide clear specifications similar to those available for clinical systems under NEMA NU 2-1994 and 2-2001. Consequently, performance evaluation papers used methods that were modified ad hoc from the clinical PET NEMA standard, thus making comparisons between systems difficult. METHODS: We acquired NEMA NU 4-2008 performance data for a collection of commercial animal PET systems manufactured since 2000: microPET P4, microPET R4, microPET Focus 120, microPET Focus 220, Inveon, ClearPET, Mosaic HP, Argus (formerly eXplore Vista), VrPET, LabPET 8, and LabPET 12. The data included spatial resolution, counting-rate performance, scatter fraction, sensitivity, and image quality and were acquired using settings for routine PET. RESULTS: The data showed a steady improvement in system performance for newer systems as compared with first-generation systems, with notable improvements in spatial resolution and sensitivity. CONCLUSION: Variation in system design makes direct comparisons between systems from different vendors difficult. When considering the results from NEMA testing, one must also consider the suitability of the PET system for the specific imaging task at hand.


Assuntos
Tomografia por Emissão de Pósitrons/estatística & dados numéricos , Sociedades/estatística & dados numéricos , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/normas , Controle de Qualidade , Espalhamento de Radiação , Sensibilidade e Especificidade , Fatores de Tempo
11.
Arch Gen Psychiatry ; 69(6): 601-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22664549

RESUMO

CONTEXT: Decreased brain serotonin (5-hydroxytryptamine) levels are considered to mediate depressive relapse induced by the tryptophan depletion paradigm. However, in patients who recently achieved remission from a major depressive episode with antidepressant treatment, only about half become depressed following tryptophan depletion. We hypothesized that downregulation of brain serotonin(2) receptors might be a compensatory mechanism that prevents some patients from becoming depressed with tryptophan depletion. OBJECTIVE: To assess, with use of positron emission tomography, whether brain serotonin(2) receptor downregulation occurs in patients with recently remitted depression who do not have depressive relapse, but not in those who become depressed, following tryptophan depletion. DESIGN: Each patient underwent 2 fluorine 18-labeled- setoperone positron emission tomography scans, one following a tryptophan depletion session and another following a control session. The order of scanning was counterbalanced. SETTING: Academic university hospital with imaging facilities. PARTICIPANTS: Seventeen patients in recent remission from a DSM-IV major depressive episode following treatment with selective serotonin reuptake inhibitors. MAIN OUTCOME MEASURES: Changes in brain serotonin(2) receptor binding. RESULTS: Of the 17 patients, 8 (47%) became depressed during the tryptophan depletion session, and none developed depression during the control session. The depletion session was associated with a significant reduction in brain serotonin(2) receptor binding compared with the control session for all participants. A subgroup analysis revealed that the reduction in serotonin(2) receptor binding was significant only for the nondepressed group. CONCLUSION: Reduction in brain serotonin(2) receptors might be a potential compensatory mechanism to prevent tryptophan depletion-induced depressive relapse.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores 5-HT2 de Serotonina/metabolismo , Triptofano/metabolismo , Adulto , Antidepressivos/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Transtorno Depressivo Maior/tratamento farmacológico , Radioisótopos de Flúor , Humanos , Radiografia , Recidiva , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
12.
Med Phys ; 38(2): 773-81, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452715

RESUMO

PURPOSE: Subject motion during positron emission tomography (PET) brain scans can reduce image quality and may lead to incorrect biological outcome measures, especially for data acquired with high resolution tomographs. A semiautomatic method for assessing the quality of frame-to-frame image realignments to compensate for subject motion in dynamic brain PET is proposed and evaluated. METHODS: A test set of 256 11C-raclopride (a dopamine D2-type receptor antagonist) brain PET image frames was used to develop and evaluate the proposed method. The transformation matrix to be applied to each image to achieve a frame-to-frame realignment was calculated with two independent methods: Using motion data measured with the Polaris Vicra optical tracking device and using the image-based realignment algorithm AIR (automated image registration). The quality assessment method is based on the observation that there is a very low probability that two independent approaches to motion detection will produce equal, but incorrect results. Agreement between transformation matrices was taken to be a signature of an accurate motion determination and thus realignment. Each pair of realignment matrices was compared and used to calculate a metric describing the frame-to-frame image realignment accuracy. In order to determine the range of values of the metric that correspond to a successful realignment, a comparison was made to a detailed visual inspection of the frame-to-frame realigned images for each image in the test set. The threshold on the metric for realignment acceptance was then selected to optimize the numbers of true-positives (realignments accepted by both the protocol and the operator) and minimize the number of false-positives (accepted by the protocol but not the operator). RESULTS: The proposed method categorized 53% of the image realignments in the test dataset as successful, of which 11% were incorrectly categorized (6% of the total dataset). Implementation of the proposed assessment tool resulted in a 45% time savings compared to the same visual inspection applied to all image realignments. CONCLUSIONS: The frame-to-frame image realignment assessment tool presented here required less operator time to evaluate realignment success compared to a method requiring visual inspection of all realigned images, while maintaining the same level of accuracy in the realigned dataset. This practical method can be easily implemented at any center with motion monitoring capabilities or, for centers lacking this technology, methods of estimating image realignment parameters that use independent information. In addition, the procedure is flexible, allowing modifications to be made for different tracer types and/or downstream analysis goals.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Humanos , Movimento , Reprodutibilidade dos Testes
13.
IEEE Trans Med Imaging ; 27(8): 1018-33, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18672420

RESUMO

With continuing improvements in spatial resolution of positron emission tomography (PET) scanners, small patient movements during PET imaging become a significant source of resolution degradation. This work develops and investigates a comprehensive formalism for accurate motion-compensated reconstruction which at the same time is very feasible in the context of high-resolution PET. In particular, this paper proposes an effective method to incorporate presence of scattered and random coincidences in the context of motion (which is similarly applicable to various other motion correction schemes). The overall reconstruction framework takes into consideration missing projection data which are not detected due to motion, and additionally, incorporates information from all detected events, including those which fall outside the field-of-view following motion correction. The proposed approach has been extensively validated using phantom experiments as well as realistic simulations of a new mathematical brain phantom developed in this work, and the results for a dynamic patient study are also presented.


Assuntos
Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Tomografia por Emissão de Pósitrons/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Modelos Estatísticos , Movimento (Física) , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
14.
Phys Med Biol ; 52(8): 2089-106, 2007 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-17404457

RESUMO

We describe an ordinary Poisson list-mode expectation maximization (OP-LMEM) algorithm with a sinogram-based scatter correction method based on the single scatter simulation (SSS) technique and a random correction method based on the variance-reduced delayed-coincidence technique. We also describe a practical approximate scatter and random-estimation approach for dynamic PET studies based on a time-averaged scatter and random estimate followed by scaling according to the global numbers of true coincidences and randoms for each temporal frame. The quantitative accuracy achieved using OP-LMEM was compared to that obtained using the histogram-mode 3D ordinary Poisson ordered subset expectation maximization (3D-OP) algorithm with similar scatter and random correction methods, and they showed excellent agreement. The accuracy of the approximated scatter and random estimates was tested by comparing time activity curves (TACs) as well as the spatial scatter distribution from dynamic non-human primate studies obtained from the conventional (frame-based) approach and those obtained from the approximate approach. An excellent agreement was found, and the time required for the calculation of scatter and random estimates in the dynamic studies became much less dependent on the number of frames (we achieved a nearly four times faster performance on the scatter and random estimates by applying the proposed method). The precision of the scatter fraction was also demonstrated for the conventional and the approximate approach using phantom studies.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Simulação por Computador , Humanos , Modelos Biológicos , Modelos Estatísticos , Análise Numérica Assistida por Computador , Imagens de Fantasmas , Distribuição de Poisson , Tomografia por Emissão de Pósitrons/instrumentação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
15.
Mov Disord ; 21(7): 970-5, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16570297

RESUMO

In this study, we assessed the changes of endogenous dopamine (DA) levels in response to methylphenidate in 5 patients with idiopathic Parkinson's disease (PD) and 6 healthy controls. Three-dimensional positron emission tomography was performed with the D2 receptor antagonist [11C]raclopride (RAC) at baseline and 1 hour following the administration of oral methylphenidate (0.8 mg/kg) to assess changes in dopamine levels indirectly. Oral methylphenidate produced no significant change in extracellular DA levels in the putamen, as estimated by comparing changes in RAC binding at baseline and 1 hour following its administration in PD subjects and healthy controls. However, there were small changes in RAC binding of opposite direction in caudate and ventral striatal regions compared between the two groups. Although there was no consistent improvement in motor function in the PD group, some patients did experience a subjective high in response to methylphenidate (MP). Failure of oral MP to alter extracellular DA levels in putamen could result from degeneration of presynaptic dopaminergic terminals, with consequent severe reductions in the levels of endogenous DA and dopamine transporter in PD subjects. Our data provide in vivo neurochemical support for the lack of clinical efficacy following MP in PD patients and are also in keeping with reduced DA release following amphetamine in PD subjects.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Líquido Extracelular/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Metilfenidato/administração & dosagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Putamen/efeitos dos fármacos , Administração Oral , Adulto , Idoso , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/efeitos dos fármacos , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/efeitos dos fármacos , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2 , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Putamen/diagnóstico por imagem , Racloprida/farmacocinética , Falha de Tratamento
16.
Phys Med Biol ; 50(20): 4887-912, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16204879

RESUMO

Modern high-resolution PET is now more than ever in need of scrutiny into the nature and limitations of the imaging modality itself as well as image reconstruction techniques. In this work, we have reviewed, analysed and addressed the following three considerations within the particular context of state-of-the-art dynamic PET imaging: (i) the typical average numbers of events per line-of-response (LOR) are now (much) less than unity, (ii) due to the physical and biological decay of the activity distribution, one requires robust and efficient reconstruction algorithms applicable to a wide range of statistics and (iii) the computational considerations in dynamic imaging are much enhanced (i.e., more frames to be stored and reconstructed). Within the framework of statistical image reconstruction, we have argued theoretically and shown experimentally that the sinogram non-negativity constraint (when using the delayed-coincidence and/or scatter-subtraction techniques) is especially expected to result in an overestimation bias. Subsequently, two schemes are considered: (a) subtraction techniques in which an image non-negativity constraint has been imposed and (b) implementation of random and scatter estimates inside the reconstruction algorithms, thus enabling direct processing of Poisson-distributed prompts. Both techniques are able to remove the aforementioned bias, while the latter, being better conditioned theoretically, is able to exhibit superior noise characteristics. We have also elaborated upon and verified the applicability of the accelerated list-mode image reconstruction method as a powerful solution for accurate, robust and efficient dynamic reconstructions of high-resolution data (as well as a number of additional benefits in the context of state-of-the-art PET).


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tomografia por Emissão de Pósitrons/métodos , Técnica de Subtração , Simulação por Computador , Interpretação Estatística de Dados , Armazenamento e Recuperação da Informação/métodos , Modelos Biológicos , Modelos Estatísticos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
17.
J Nucl Med ; 46(2): 335-43, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15695795

RESUMO

UNLABELLED: The importance of accurate attenuation correction, especially for imaging of the thorax region, is widely acknowledged. Appropriate compensation methods have been developed and introduced into clinical practice. Most of these methods use attenuation maps obtained using various transmission scanning systems. However, when maps are inaccurate, the correction procedure may introduce artifacts into the final images that can be difficult to identify and might inadvertently alter diagnosis and study outcome. As a result, attenuation correction is often avoided in clinical practice. Our objective was to examine issues related to the quality of attenuation maps and the effects that map artifacts may have on attenuation-corrected emission images. METHODS: The topics that are investigated include the problem of low transmission counts, cross-talk contributions from the emission isotope, truncation of the transmission data, and methods of map reconstruction and segmentation. Examples of patient studies displaying specific problems guided our investigations, but, because truth in these studies is seldom known, analytic and Monte Carlo-simulated data were used in the analysis. Attenuation maps and final emission images were visually checked for artifacts and for the presence of perfusion defects. In addition, quantitative evaluation of map uniformity, defect visibility, and size variation was performed. RESULTS: The statistical paired-sample t test showed significant (P < 0.05) improvement of relative SD for attenuation maps reconstructed with iterative methods as compared with filtered backprojection and for maps created with higher photon fluxes. When maps with artifacts were used to correct emission data, an increase in myocardial infarct size and creation of false heart defects were observed. CONCLUSION: Our study strongly recommends that at least a visual inspection of the quality of attenuation maps be performed before their use in compensation procedures. To improve image quality, remove artifacts, and increase diagnostic confidence, attenuation maps used in the correction procedure must be accurate and free of artifacts.


Assuntos
Artefatos , Erros de Diagnóstico/prevenção & controle , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Tórax/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Simulação por Computador , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...