Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743629

RESUMO

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Assuntos
Citosol , Glutarredoxinas , Glutationa , Proteínas Ferro-Enxofre , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citosol/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutationa/metabolismo , Mitocôndrias/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Mitocondriais/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(44): e2311057120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883440

RESUMO

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Ferro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
3.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292740

RESUMO

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide present at the C-terminus of clients is necessary and sufficient for binding to the CTC in vitro and directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR (target complex recognition) signal enables engineering of cluster maturation on a non-native protein via recruitment of the CIA machinery. Our study significantly advances our understanding of Fe-S protein maturation and paves the way for bioengineering applications.

4.
J Am Chem Soc ; 141(14): 5753-5765, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30879301

RESUMO

Apd1, a cytosolic yeast protein, and Aim32, its counterpart in the mitochondrial matrix, have a C-terminal thioredoxin-like ferredoxin (TLF) domain and a widely divergent N-terminal domain. These proteins are found in bacteria, plants, fungi, and unicellular pathogenic eukaryotes but not in Metazoa. Our chemogenetic experiments demonstrate that the highly conserved cysteine and histidine residues within the C-X8-C-X24-75-H-X-G-G-H motif of the TLF domain of Apd1 and Aim32 proteins are essential for viability of yeast cells upon treatment with the redox mediators gallobenzophenone or pyrogallol, respectively. UV-vis, EPR, and Mössbauer spectroscopy of purified wild-type Apd1 and three His to Cys variants demonstrated that Cys207 and Cys216 are the ligands of the ferric ion, and His255 and His259 are the ligands of the reducible iron ion of the [2Fe-2S]2+/1+ cluster. The [2Fe-2S] center of Apd1 ( Em,7 = -164 ± 5 mV, p Kox1,2 = 7.9 ± 0.1 and 9.7 ± 0.1) differs from both dioxygenase ( Em,7 ≈ -150 mV, p Kox1,2 = 9.8 and 11.5) and cytochrome bc1/ b6 f Rieske clusters ( Em,7 ≈ +300 mV, p Kox1,2= 7.7 and 9.8). Apd1 and its engineered variants represent an unprecedented flexible system for which a stable [2Fe-2S] cluster with two histidine ligands, (two different) single histidine ligands, or only cysteinyl ligands is possible in the same protein fold. Our results define a remarkable example of convergent evolution of the [2Fe-2S] cluster containing proteins with bishistidinyl coordination.


Assuntos
Ferredoxinas/química , Ferredoxinas/metabolismo , Histidina , Transporte de Elétrons , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...