Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 399, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117933

RESUMO

BACKGROUND: The three epidemiologically important Opisthorchiidae liver flukes Opisthorchis felineus, O. viverrini, and Clonorchis sinensis, are believed to harbour similar potencies to provoke hepatobiliary diseases in their definitive hosts, although their populations have substantially different ecogeographical aspects including habitat, preferred hosts, population structure. Lack of O. felineus genomic data is an obstacle to the development of comparative molecular biological approaches necessary to obtain new knowledge about the biology of Opisthorchiidae trematodes, to identify essential pathways linked to parasite-host interaction, to predict genes that contribute to liver fluke pathogenesis and for the effective prevention and control of the disease. RESULTS: Here we present the first draft genome assembly of O. felineus and its gene repertoire accompanied by a comparative analysis with that of O. viverrini and Clonorchis sinensis. We observed both noticeably high heterozygosity of the sequenced individual and substantial genetic diversity in a pooled sample. This indicates that potency of O. felineus population for rapid adaptive response to control and preventive measures of opisthorchiasis is higher than in O. viverrini and C. sinensis. We also have found that all three species are characterized by more intensive involvement of trans-splicing in RNA processing compared to other trematodes. CONCLUSION: All revealed peculiarities of structural organization of genomes are of extreme importance for a proper description of genes and their products in these parasitic species. This should be taken into account both in academic and applied research of epidemiologically important liver flukes. Further comparative genomics studies of liver flukes and non-carcinogenic flatworms allow for generation of well-grounded hypotheses on the mechanisms underlying development of cholangiocarcinoma associated with opisthorchiasis and clonorchiasis as well as species-specific mechanisms of these diseases.


Assuntos
Cricetinae/parasitologia , Cyprinidae/parasitologia , Genoma Helmíntico , Genômica/métodos , Proteínas de Helminto/genética , Opistorquíase/epidemiologia , Opisthorchis/genética , Sequência de Aminoácidos , Animais , Clonorquíase/epidemiologia , Clonorquíase/genética , Clonorquíase/parasitologia , Clonorchis sinensis/genética , Opistorquíase/genética , Opistorquíase/parasitologia , Homologia de Sequência
2.
BMC Plant Biol ; 10: 168, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20699006

RESUMO

BACKGROUND: Variability of the VRN1 promoter region of the unique collection of spring polyploid and wild diploid wheat species together with diploid goatgrasses (donor of B and D genomes of polyploid wheats) were investigated. Accessions of wild diploid (T. boeoticum, T. urartu) and tetraploid (T. araraticum, T. timopheevii) species were studied for the first time. RESULTS: Sequence analysis indicated great variability in the region from -62 to -221 nucleotide positions of the VRN1 promoter region. Different indels were found within this region in spring wheats. It was shown that VRN1 promoter region of B and G genome can also contain damages such as the insertion of the transposable element.Some transcription factor recognition sites including hybrid C/G-box for TaFDL2 protein known as the VRN1 gene upregulator were predicted inside the variable region. It was shown that deletions leading to promoter damage occurred in diploid and polyploid species independently. DNA transposon insertions first occurred in polyploid species. At the same time, the duplication of the promoter region was observed in A genomes of polyploid species. CONCLUSIONS: We can conclude that supposed molecular mechanism of the VRN1 gene activating in cultivated diploid wheat species T. monococcum is common also for wild T. boeoticum and was inherited by T. monococcum. The spring polyploids are not related in their origin to spring diploids. The spring T. urartu and goatgrass accessions have another mechanism of flowering activation that is not connected with indels in VRN1 promoter region. All obtained data may be useful for detailed insight into origin of spring wheat forms in evolution and domestication process.


Assuntos
Genes de Plantas/genética , Variação Genética , Regiões Promotoras Genéticas/genética , Triticum/genética , Alelos , Sequência de Bases , Diploide , Deleção de Genes , Dados de Sequência Molecular , Filogenia , Poliploidia , Elementos Reguladores de Transcrição/genética , Estações do Ano , Alinhamento de Sequência , Triticum/classificação , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
3.
Cell Biol Int ; 31(2): 97-108, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17085060

RESUMO

vasa (vas)-related genes are members of the DEAD-box protein family and are expressed in the germ cells of many Metazoa. We cloned vasa-related genes (PpVLG, CpVLG) and other DEAD-box family related genes (PpDRH1, PpDRH2, CpDRH, AtDRHr) from the colonial parasitic rhizocephalan barnacle Polyascus polygenea, the non-colonial Clistosaccus paguri (Crustacea: Cirripedia: Rhizocephala), and the parasitic isopodan Athelgis takanoshimensis (Crustacea: Isopoda). The colonial Polyascus polygenea, a parasite of the coastal crabs Hemigrapsus sanguineus and Hemigrapsus longitarsis was used as a model object for further detailed investigations. Phylogenetic analysis suggested that PpVLG and CpVLG are closely related to vasa-like genes of other Arthropoda. The rest of the studied genes form their own separate branch on the phylogenetic tree and have a common ancestry with the p68 and PL10 subfamilies. We suppose this group may be a new subfamily of the DEAD-box RNA helicases that is specific for parasitic Crustacea. We found PpVLG and PpDRH1 expression products in stem cells from stolons and buds of internae, during asexual reproduction of colonial P. polygenea, and in germ cells from sexually reproducing externae, including male spermatogenic cells and female oogenic cells.


Assuntos
RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica , Parasitos/citologia , Parasitos/genética , Células-Tronco/metabolismo , Thoracica/citologia , Thoracica/genética , Sequência de Aminoácidos , Animais , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/isolamento & purificação , RNA Helicases DEAD-box/metabolismo , Estágios do Ciclo de Vida , Dados de Sequência Molecular , Parasitos/anatomia & histologia , Parasitos/crescimento & desenvolvimento , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Thoracica/anatomia & histologia , Thoracica/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...