Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Undersea Hyperb Med ; 48(2): 157-168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33975406

RESUMO

Introduction: Safe administration of critical care hyperbaric medicine requires specialized equipment and advanced training. Equipment must be tested in order to evaluate function in the hyperbaric environment. High-frequency percussive ventilation (HFPV) has been used in intensive care settings effectively, but it has never been tested in a hyperbaric chamber. Methods: Following a modified U.S. Navy testing protocol used to evaluate hyperbaric ventilators, we evaluated an HFPV transport ventilator in a multiplace hyperbaric chamber at 1.0, 1.9, and 2.8 atmospheres absolute (ATA). We used a test lung with analytical software for data collection. The ventilator uses simultaneous cyclic pressure-controlled ventilation at a pulsatile flow rate (PFR)/oscillatory continuous positive airway pressure (oCPAP) ratio of 30/10 with a high-frequency oscillation percussive rate of 500 beats per minute. Inspiratory and expiratory times were maintained at two seconds throughout each breathing cycle. Results: During manned studies, the PFR/oCPAP ratios were 26/6, 22/7, and 22.5/8 at an airway resistance of 20cm H2O/L/second and 18/9, 15.2/8.5, and 13.6/7 at an airway resistance of 50 cm/H2O/L/second at 1, 1.9, and 2.8 ATA. The resulting release volumes were 800, 547, and 513 mL at airway resistance of 20 cm H2O/L/sec and 400, 253, and 180 mL at airway resistance of 50 cm/H2O/L/sec at 1, 1.9, and 2.8 ATA. Unmanned testing showed similar changes. The mean airway pressure (MAP) remained stable throughout all test conditions; theoretically, supporting adequate lung recruitment and gas exchange. A case where HFPV was used to treat a patient for CO poisoning was presented to illustrate that HFPV worked well under HBO2 conditions and no complications occurred during HBO2 treatment. Conclusion: The HFPV transport ventilator performed adequately under hyperbaric conditions and should be considered a viable option for hyperbaric critical care. This ventilator has atypical terminology and produces unique pulmonary physiology, thus requiring specialized training prior to use.


Assuntos
Ventilação de Alta Frequência/instrumentação , Oxigenoterapia Hiperbárica/instrumentação , Lesão por Inalação de Fumaça/terapia , Ventiladores Mecânicos , Acidose/etiologia , Idoso , Resistência das Vias Respiratórias , Pressão Atmosférica , Intoxicação por Monóxido de Carbono/complicações , Feminino , Ventilação de Alta Frequência/métodos , Humanos , Oxigenoterapia Hiperbárica/métodos , Pulmão/fisiologia , Respiração com Pressão Positiva/instrumentação , Respiração com Pressão Positiva/métodos , Troca Gasosa Pulmonar/fisiologia , Fluxo Pulsátil , Valores de Referência , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...