Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 49(9): 6209-6220, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35760763

RESUMO

BACKGROUND: With the emergence of more complex and novel proton delivery techniques, there is a need for quality assurance tools with high spatiotemporal resolution to conveniently measure the spatial and temporal properties of the beam. In this context, scintillation-based dosimeters, if synchronized with the radiation beam and corrected for ionization quenching, are appealing. PURPOSE: To develop a synchronized high-speed scintillation imaging system for characterization and verification of the proton therapy beams on a pulse-by-pulse basis. MATERIALS AND METHODS: A 30 cm × 30 cm × 5 cm block of BC-408 plastic scintillator placed in a light-tight housing was irradiated by proton beams generated by a Mevion S250 proton therapy synchrocyclotron. A high-speed camera system, placed perpendicular to the beam direction and facing the scintillator, was synchronized to the accelerator's pulses to capture images. Opening and closing of the camera's shutter was controlled by setting a proper time delay and exposure time, respectively. The scintillation signal was recorded as a set of two-dimensional (2D) images. Empirical correction factors were applied to the images to correct for the nonuniformity of the pixel sensitivity and quenching of the scintillator. Proton range and modulation were obtained from the corrected images. RESULTS: The camera system was able to capture all data on a pulse-by-pulse basis at a rate of ∼504 frames per second. The applied empirical correction method for ionization quenching was effective and the corrected composite image provided a 2D map of dose distribution. The measured range (depth of distal 90%) through scintillation imaging agreed within 1.2 mm with that obtained from ionization chamber measurement. CONCLUSION: A high-speed camera system capable of capturing scintillation signals from individual proton pulses was developed. The scintillation imaging system is promising for rapid proton beam characterization and verification.


Assuntos
Terapia com Prótons , Contagem de Cintilação , Ciclotrons , Método de Monte Carlo , Prótons , Radiometria , Dosagem Radioterapêutica , Contagem de Cintilação/métodos
2.
Med Phys ; 48(6): e86-e114, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33780010

RESUMO

With the advancement of data-intensive technologies, such as image-guided radiation therapy (IGRT) and intensity-modulated radiation therapy (IMRT), the amount and complexity of data to be transferred between clinical subsystems have increased beyond the reach of manual checking. As a result, unintended treatment deviations (e.g., dose errors) may occur if the treatment system is not closely monitored by a comprehensive data transfer quality management program (QM). This report summarizes the findings and recommendations from the task group (TG) on quality assurance (QA) of external beam treatment data transfer (TG-201), with the aim to assist medical physicists in designing their own data transfer QM. As a background, a section of this report describes various models of data flow (distributed data repositories and single data base systems) and general data test characteristics (data integrity, interpretation, and consistency). Recommended tests are suggested based on the collective experience of TG-201 members. These tests are for the acceptance of, commissioning of, and upgrades to subsystems that store and/or modify clinical treatment data. As treatment complexity continues to evolve, we will need to do and know more about ensuring the quality of data transfers. The report concludes with the recommendation to move toward data transfer open standards compatibility and to develop tools that automate data transfer QA.


Assuntos
Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Relatório de Pesquisa , Estados Unidos
3.
Int J Part Ther ; 3(1): 51-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31772975

RESUMO

PURPOSE: In this report, we present the commissioning and validation results for a commercial proton pencil beam scanning RayStation treatment planning system. MATERIALS AND METHODS: The commissioning data requirements are (1) integrated depth dose curves, (2) spot profiles, (3) absolute dose/monitor unit calibration, and (4) virtual source position. An 8-cm parallel plate chamber was used to measure the integrated depth dose curves by scanning a beam composed of a single spot in a water phantom. The spot profiles were measured at 5 different planes using a 2-dimensional scintillation detector. The absolute dose/monitor unit calibration was based on dose measurements in single-layer fields of size 10 × 10 cm2. The virtual-source position was calculated from the change in spot spacing with the distance from the isocenter. The beam model validation consisted of a comparison against commissioning data as well as a new set of verification measurements. For end-to-end testing, a series of phantom plans were created. These plans were measured at 1 to 3 depths using a 2-dimensional ion chamber array and evaluated for gamma index using the 3% and 3 mm criteria. RESULTS: The maximum deviation for spot sigma measured versus calculated was -0.2 mm. The point-dose measurements for single-layer beams were within ± 3%, except for the largest field size (29 × 29 cm2) and the highest energy (226 MeV). The point doses in the spread-out Bragg peak plans showed a trend in which differences > 3% were seen for ranges > 30 cm, field sizes > 15 × 15 cm2, and depths > 25 cm. For end-to-end testing, 34 planes corresponding to 13 beams were analyzed for gamma index with a minimum pass rate of 92.8%. CONCLUSION: The acceptable verification results and successful end-to-end testing ensured that all components of the treatment planning system were functional and the system was ready for clinical use.

4.
Phys Med Biol ; 58(24): 8709-23, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24301001

RESUMO

Neutron production is of concern for proton therapy, especially for passive scattering proton beam delivery methods. The levels of neutron dose equivalent vary significantly with system design and treatment parameters. The purpose of this study was to examine neutron dose equivalent per therapeutic dose (H/D) around the Mevion S250 proton therapy system, a novel design of proton therapy systems. The benchmark comparisons between measurement and simulation were found to be within a factor of 2 for most cases. The H/D values were evaluated as a function of various parameters. The results showed that, at a standard reference condition (10 × 10 cm(2) field size, distance 1 m detector-to-isocenter lateral to the primary proton beam direction), the H/D values range from 0.72 to 3.37 mSv Gy(-1) for all configurations studied. The H/D values generally (1) decreased as the neutron detectors moved away from the isocenter, (2) decreased with increasing aperture field sizes, (3) increased with increasing angle from the initial beam axis and (4) were independent of treatment nozzle position. The H/D trends were consistent with other existing passive scattering proton accelerators reported in the literature.


Assuntos
Método de Monte Carlo , Nêutrons , Aceleradores de Partículas , Prótons/efeitos adversos , Doses de Radiação , Exposição Ambiental/análise , Humanos , Terapia com Prótons/efeitos adversos , Radiometria
5.
J Appl Clin Med Phys ; 12(1): 3479, 2010 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-21330992

RESUMO

The transfer of radiation therapy data among the various subsystems required for external beam treatments is subject to error. Hence, the establishment and management of a data transfer quality assurance program is strongly recommended. It should cover the QA of data transfers of patient specific treatments, imaging data, manually handled data and historical treatment records. QA of the database state (logical consistency and information integrity) is also addressed to ensure that accurate data are transferred.


Assuntos
Bases de Dados Factuais , Radioterapia (Especialidade)/métodos , Radioterapia/métodos , Relatório de Pesquisa , Humanos , Imagens de Fantasmas , Controle de Qualidade , Radioterapia (Especialidade)/normas , Radioterapia/normas , Dosagem Radioterapêutica
6.
J Appl Clin Med Phys ; 10(4): 16-35, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19918239

RESUMO

The ever-increasing data demands in a radiation oncology (RO) clinic require medical physicists to have a clearer understanding of the information technology (IT) resource management issues. Clear lines of collaboration and communication among administrators, medical physicists, IT staff, equipment service engineers and vendors need to be established. In order to develop a better understanding of the clinical needs and responsibilities of these various groups, an overview of the role of IT in RO is provided. This is followed by a list of IT related tasks and a resource map. The skill set and knowledge required to implement these tasks are described for the various RO professionals. Finally, various models for assessing one's IT resource needs are described. The exposition of ideas in this white paper is intended to be broad, in order to raise the level of awareness of the RO community; the details behind these concepts will not be given here and are best left to future task group reports.


Assuntos
Sistemas de Apoio a Decisões Clínicas/organização & administração , Conhecimentos, Atitudes e Prática em Saúde , Física Médica , Necessidades e Demandas de Serviços de Saúde/organização & administração , Gestão da Informação/organização & administração , Gestão da Informação/estatística & dados numéricos , Radioterapia (Especialidade)/estatística & dados numéricos , Atitude do Pessoal de Saúde , Humanos , Modelos Teóricos
7.
J Appl Clin Med Phys ; 8(2): 61-75, 2007 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-17592466

RESUMO

In the present work, we investigated the accuracy of the electron pencil-beam redefinition algorithm (PBRA) in calculating central-axis percent depth dose in water for rectangular fields. The PBRA energy correction factor C(E) was determined so that PBRA-calculated percent depth dose best matched the percent depth dose measured in water. The hypothesis tested was that a method can be implemented into the PBRA that will enable the algorithm to calculate central-axis percent depth dose in water at a 100-cm source-to-surface distance (SSD) with an accuracy of 2% or 1-mm distance to agreement for rectangular field sizes > or = 2 x 2 cm. Preliminary investigations showed that C(E), determined using a single percent depth dose for a large field (that is, having side-scatter equilibrium), was insufficient for the PBRA to accurately calculate percent depth dose for all square fields > or = 2 x 2 cm. Therefore, two alternative methods for determining C(E) were investigated. In Method 1, C(E), modeled as a polynomial in energy, was determined by fitting the PBRA calculations to individual rectangular-field percent depth doses. In Method 2, C(E) for square fields, described by a polynomial in both energy and side of square W [that is, C = C(E,W)], was determined by fitting the PBRA calculations to measured percent depth dose for a small number of square fields. Using the function C(E,W), C(E) for other square fields was determined, and C(E) for rectangular field sizes was determined using the geometric mean of C(E) for the two measured square fields of the dimension of the rectangle (square root method). Using both methods, PBRA calculations were evaluated by comparison with measured square-field and derived rectangular-field percent depth doses at 100-cm SSD for the Siemens Primus radiotherapy accelerator equipped with a 25 x 25-cm applicator at 10 MeV and 15 MeV. To improve the fit of C(E) and C(E,W) to the electron component of percent depth dose, it was necessary to modify the PBRA's photon depth dose model to include dose buildup. Results showed that, using both methods, the PBRA was able to predict percent depth dose within criteria for all square and rectangular fields. Results showed that second- or third-order polynomials in energy (Methods 1 and 2) and in field size (Method 2) were typically required. Although the time for dose calculation using Method 1 is approximately twice that using Method 2, we recommend that Method 1 be used for clinical implementation of the PBRA because it is more accurate (most measured depth doses predicted within approximately 1%) and simpler to implement.


Assuntos
Algoritmos , Elétrons/uso terapêutico , Modelos Biológicos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Carga Corporal (Radioterapia) , Simulação por Computador , Humanos , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...