Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oral Microbiol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515284

RESUMO

The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.

2.
Front Cell Infect Microbiol ; 14: 1357631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456080

RESUMO

Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.


Assuntos
Cárie Dentária , Humanos , Streptococcus , Streptococcus mutans , Streptococcus sobrinus , Boca/microbiologia , Biofilmes
3.
Mol Oral Microbiol ; 38(2): 115-133, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35964247

RESUMO

The recently identified bacterium Tannerella serpentiformis is the closest phylogenetic relative of Tannerella forsythia, whose presence in oral biofilms is associated with periodontitis. Conversely, T. serpentiformis is considered health-associated. This discrepancy was investigated in a comparative study of the two Tannerella species. The biofilm behavior was analyzed upon their addition and of Porphyromonas gingivalis-each bacterium separately or in combinations-to an in vitro five-species oral model biofilm. Biofilm composition and architecture was analyzed quantitatively using real-time PCR and qualitatively by fluorescence in situ hybridization/confocal laser scanning microscopy, and by scanning electron microscopy. The presence of T. serpentiformis led to a decrease of the total cell number of biofilm bacteria, while P. gingivalis was growth-promoting. This effect was mitigated by T. serpentiformis when added to the biofilm together with P. gingivalis. Notably, T. serpentiformis outcompeted T. forsythia numbers when the two species were simultaneously added to the biofilm compared to biofilms containing T. forsythia alone. Tannerella serpentiformis appeared evenly distributed throughout the multispecies biofilm, while T. forsythia was surface-located. Adhesion and invasion assays revealed that T. serpentiformis was significantly less effective in invading human gingival epithelial cells than T. forsythia. Furthermore, compared to T. forsythia, a higher immunostimulatory potential of human gingival fibroblasts and macrophages was revealed for T. serpentiformis, based on mRNA expression levels of the inflammatory mediators interleukin 6 (IL-6), IL-8, monocyte chemoattractant protein-1 and tumor necrosis factor α, and production of the corresponding proteins. Collectively, these data support the potential of T. serpentiformis to interfere with biological processes relevant to the establishment of periodontitis.


Assuntos
Periodontite , Porphyromonas gingivalis , Tannerella forsythia , Humanos , Biofilmes , Hibridização in Situ Fluorescente , Periodontite/microbiologia , Filogenia , Porphyromonas gingivalis/genética , Tannerella forsythia/genética , Tannerella
4.
Front Cell Infect Microbiol ; 12: 835509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223555

RESUMO

Tannerella forsythia and Porphyromonas gingivalis target distinct virulence factors bearing a structurally conserved C-terminal domain (CTD) to the type IX protein secretion system (T9SS). The T9SS comprises an outer membrane translocation complex which works in concert with a signal peptidase for CTD cleavage. Among prominent T9SS cargo linked to periodontal diseases are the TfsA and TfsB components of T. forsythia's cell surface (S-) layer, the bacterium's BspA surface antigen and a set of cysteine proteinases (gingipains) from P. gingivalis. To assess the overall role of the bacterial T9SS in the host response, human macrophages and human gingival fibroblasts were stimulated with T. forsythia and P. gingivalis wild-type bacteria and T9SS signal peptidase-deficient mutants defective in protein secretion, respectively. The immunostimulatory potential of these bacteria was compared by analyzing the mRNA expression levels of the pro-inflammatory mediators IL-6, IL-8, MCP-1 and TNF-α by qPCR and by measuring the production of the corresponding proteins by ELISA. Shot-gun proteomics analysis of T. forsythia and P. gingivalis outer membrane preparations confirmed that several CTD-bearing virulence factors which interact with the human immune system were depleted from the signal peptidase mutants, supportive of effective T9SS shut-down. Three and, more profoundly, 16 hours post stimulation, the T. forsythia T9SS mutant induced significantly less production of cytokines and the chemokine in human cells compared to the corresponding parent strain, while the opposite was observed for the P. gingivalis T9SS mutant. Our data indicate that T9SS shut-down translates into an altered inflammatory response in periodontal pathogens. Thus, the T9SS as a potential novel target for periodontal therapy needs further evaluation.


Assuntos
Porphyromonas gingivalis , Tannerella forsythia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Humanos , Imunidade , Tannerella forsythia/genética , Tannerella forsythia/metabolismo
5.
J Am Chem Soc ; 143(27): 10389-10402, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34212720

RESUMO

Mutanobactin D is a non-ribosomal, cyclic peptide isolated from Streptococcus mutans and shows activity reducing yeast-to-hyphae transition as well as biofilm formation of the pathogenic yeast Candida albicans. We report the first total synthesis of this natural product, which relies on enantioselective, zinc-mediated 1,3-dipolar cycloaddition and a sequence of cascading reactions, providing the key lipidated γ-amino acid found in mutanobactin D. The synthesis enables configurational assignment, determination of the dominant solution-state structure, and studies to assess the stability of the lipopeptide substructure found in the natural product. The information stored in the fingerprint region of the IR spectra in combination with quantum chemical calculations proved key to distinguishing between epimers of the α-substituted ß-keto amide. Synthetic mutanobactin D drives discovery and analysis of its effect on growth of other members of the human oral consortium. Our results showcase how total synthesis is central for elucidating the complex network of interspecies communications of human colonizers.


Assuntos
Antifúngicos/farmacologia , Peptídeos Cíclicos , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Hifas/efeitos dos fármacos , Modelos Moleculares , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
6.
Interface Focus ; 9(2): 20180064, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842870

RESUMO

Periodontitis is a polymicrobial, biofilm-caused, inflammatory disease affecting the tooth-supporting tissues. It is not only the leading cause of tooth loss worldwide, but can also impact systemic health. The development of effective treatment strategies is hampered by the complicated disease pathogenesis which is best described by a polymicrobial synergy and dysbiosis model. This model classifies the Gram-negative anaerobe Tannerella forsythia as a periodontal pathogen, making it a prime candidate for interference with the disease. Tannerella forsythia employs a protein O-glycosylation system that enables high-density display of nonulosonic acids via the bacterium's two-dimensional crystalline cell surface layer. Nonulosonic acids are sialic acid-like sugars which are well known for their pivotal biological roles. This review summarizes the current knowledge of T. forsythia's unique cell envelope with a focus on composition, biosynthesis and functional implications of the cell surface O-glycan. We have obtained evidence that glycobiology affects the bacterium's immunogenicity and capability to establish itself in the polymicrobial oral biofilm. Analysis of the genomes of different T. forsythia isolates revealed that complex protein O-glycosylation involving nonulosonic acids is a hallmark of pathogenic T. forsythia strains and, thus, constitutes a valuable target for the design of novel anti-infective strategies to combat periodontitis.

7.
Mol Oral Microbiol ; 32(5): 404-418, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28382776

RESUMO

As a member of subgingival multispecies biofilms, Tannerella forsythia is commonly associated with periodontitis. The bacterium has a characteristic cell surface (S-) layer modified with a unique O-glycan. Both the S-layer and the O-glycan were analyzed in this study for their role in biofilm formation by employing an in vitro multispecies biofilm model mimicking the situation in the oral cavity. Different T. forsythia strains and mutants with characterized defects in cell surface composition were incorporated into the model, together with nine species of select oral bacteria. The influence of the T. forsythia S-layer and attached glycan on the bacterial composition of the biofilms was analyzed quantitatively using colony-forming unit counts and quantitative real-time polymerase chain reaction, as well as qualitatively by fluorescence in situ hybridization and confocal laser scanning microscopy. This revealed that changes in the T. forsythia cell surface did not affect the quantitative composition of the multispecies consortium, with the exception of Campylobacter rectus cell numbers. The localization of T. forsythia within the bacterial agglomeration varied depending on changes in the S-layer glycan, and this also affected its aggregation with Porphyromonas gingivalis. This suggests a selective role for the glycosylated T. forsythia S-layer in the positioning of this species within the biofilm, its co-localization with P. gingivalis, and the prevalence of C. rectus. These findings might translate into a potential role of T. forsythia cell surface structures in the virulence of this species when interacting with host tissues and the immune system, from within or beyond the biofilm.


Assuntos
Biofilmes , Membrana Celular/genética , Mutação , Tannerella forsythia/genética , Tannerella forsythia/metabolismo , Campylobacter rectus/isolamento & purificação , Campylobacter rectus/fisiologia , Gengiva/microbiologia , Glicosilação , Interações Microbianas , Boca/microbiologia , Doenças Periodontais/microbiologia , Periodontite/microbiologia , Porphyromonas gingivalis/isolamento & purificação , Porphyromonas gingivalis/fisiologia , Prevotella intermedia/isolamento & purificação , Prevotella intermedia/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Treponema denticola/isolamento & purificação , Treponema denticola/fisiologia , Virulência
8.
PLoS Biol ; 11(6): e1001585, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776409

RESUMO

The functional principle of the vertebrate brain is often paralleled to a computer: information collected by dedicated devices is processed and integrated by interneuron circuits and leads to output. However, inter- and motorneurons present in today's vertebrate brains are thought to derive from neurons that combined sensory, integration, and motor function. Consistently, sensory inter-motorneurons have been found in the simple nerve nets of cnidarians, animals at the base of the evolutionary lineage. We show that light-sensory motorneurons and light-sensory interneurons are also present in the brains of vertebrates, challenging the paradigm that information processing and output circuitry in the central brain is shielded from direct environmental influences. We investigated two groups of nonvisual photopigments, VAL- and TMT-Opsins, in zebrafish and medaka fish; two teleost species from distinct habitats separated by over 300 million years of evolution. TMT-Opsin subclasses are specifically expressed not only in hypothalamic and thalamic deep brain photoreceptors, but also in interneurons and motorneurons with no known photoreceptive function, such as the typeXIV interneurons of the fish optic tectum. We further show that TMT-Opsins and Encephalopsin render neuronal cells light-sensitive. TMT-Opsins preferentially respond to blue light relative to rhodopsin, with subclass-specific response kinetics. We discovered that tmt-opsins co-express with val-opsins, known green light receptors, in distinct inter- and motorneurons. Finally, we show by electrophysiological recordings on isolated adult tectal slices that interneurons in the position of typeXIV neurons respond to light. Our work supports "sensory-inter-motorneurons" as ancient units for brain evolution. It also reveals that vertebrate inter- and motorneurons are endowed with an evolutionarily ancient, complex light-sensory ability that could be used to detect changes in ambient light spectra, possibly providing the endogenous equivalent to an optogenetic machinery.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Interneurônios/metabolismo , Neurônios Motores/metabolismo , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Vertebrados/metabolismo , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/efeitos da radiação , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Colina O-Acetiltransferase/metabolismo , Sequência Conservada , Humanos , Interneurônios/citologia , Interneurônios/efeitos da radiação , Larva/metabolismo , Luz , Camundongos , Dados de Sequência Molecular , Neurônios Motores/citologia , Neurônios Motores/efeitos da radiação , Opsinas/química , Opsinas/genética , Oryzias/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de Proteína , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...