Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 28(6): 3180-6, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22235939

RESUMO

Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

2.
J Am Chem Soc ; 130(44): 14396-7, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-18839944

RESUMO

This paper reports a straightforward approach in generating spheroid-like particles and also the orientational orders observed in the self-assembly of these particles. Nonspherical particles, such as spheroid-like particles, are useful in both fundamental studies and industrial applications due to the geometry impact that they bring to the bulk properties of various material systems. Developing processes to generate nonspherical particles is an ongoing quest to meet the need of using such particles in different applications. The approach reported here takes advantage of a controlled chemical etching process. Exposing the spherical silica particles partially to carbon tetrafluoride in a reactive ion plasma-etching chamber transformed the particles from spherical shape into spheroid-like shape. A simple model is proposed to predict the geometry of the resulting nonspherical particles. The shape and dimension of the nonspherical particles generated through such a process matched well with the prediction of the model. The assembly of these spheroid-like particles showed a unique orientational order associated with the alignment of their axes. This approach will help further studies on the fundamental properties of the nonspherical particles, such as packing, rheology, and optical interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...