Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 34(7): 3185-3196, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35557987

RESUMO

We report the synthesis, structural characterization, and oxide ion and proton conductivities of the perovskite-related Ba3-x Sr x YGa2O7.5 family. Single-phase samples are prepared for 0 ≤ x ≤ 3 and show a complex structural evolution from P2/c to C2 space groups with an increase in x. For 1.0 ≲ x ≲ 2.4, average structures determined by X-ray and neutron powder diffraction show metrically orthorhombic unit cells, but HAADF-STEM imaging reveals this is caused by microstructural effects due to intergrowths of the Ba- and Sr-rich structure types. Variable-temperature powder diffraction studies suggest that 0 ≲ x ≲ 2.4 compositions undergo a phase transition upon being heated to space group Cmcm that involves disordering of the oxygen substructure. Thermal expansion coefficients are reported for the series. Complex impedance studies show that the Ba-rich samples are mixed proton and oxide ion conductors under moist atmospheres but are predominantly oxide ion conductors at high temperatures or under dry atmospheres. Sr-rich samples show significantly less water uptake and appear to be predominantly oxide ion conductors under the conditions studied.

2.
Nat Commun ; 13(1): 1942, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410458

RESUMO

Manganese oxides are ubiquitous marine minerals which are redox sensitive. As major components of manganese nodules found on the ocean floor, birnessite and buserite have been known to be two distinct water-containing minerals with manganese octahedral interlayer separations of ~7 Å and ~10 Å, respectively. We show here that buserite is a super-hydrated birnessite formed near 5 km depth conditions. As one of the most hydrous minerals containing ca. 34.5 wt. % water, super-hydrated birnessite, i.e., buserite, remains stable up to ca. 70 km depth conditions, where it transforms into manganite by releasing ca. 24.3 wt. % water. Subsequent transformations to hausmannite and pyrochroite occur near 100 km and 120 km depths, respectively, concomitant with a progressive reduction of Mn4+ to Mn2+. Our work forwards an abiotic geochemical cycle of manganese minerals in subduction and/or other aqueous terrestrial environments, with implications for water storage and cycling, and the redox capacity of the region.

3.
J Am Chem Soc ; 144(1): 615-624, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34967601

RESUMO

Functional oxides showing high ionic conductivity have many important technological applications. We report oxide ion and proton conductivity in a family of perovskite-related compounds of the general formula A3OhTd2O7.5, where Oh is an octahedrally coordinated metal ion and Td is a tetrahedrally coordinated metal ion. The high tetrahedral content in these ABO2.5 compositions relative to that in the perovskite ABO3 or brownmillerite A2B2O5 structures leads to tetrahedra with only three of their four vertices connected in the polyhedral framework, imparting a potential low-energy mechanism for O2- migration. The low- and high-temperature average and local structures of Ba3YGa2O7 (P2/c, a = 7.94820(5) Å, b = 5.96986(4) Å, c = 18.4641(1) Å, and ß = 91.2927(5) ° at 22 °C) were determined by Rietveld and neutron pair distribution function (PDF) analysis, and a phase transition to a high-temperature P1121/a structure (a = 12.0602(1) Å, b = 9.8282(2) Å, c = 8.04982(6) Å, and γ = 107.844(3)° at 1000 °C) involving the migration of O2- ions was identified. Ionic conductivities of Ba3YGa2O7.5 and compositions substituted to introduce additional oxide vacancies and interstitials are reported. Most phases show proton conductivity at lower temperatures and oxide ion conductivity at high temperatures, with Ba3YGa2O7.5 retaining proton conductivity at high temperatures. Ba2.9La0.1YGa2O7.55 and Ba3YGa1.9Ti0.1O7.55 appear to be dominant oxide ion conductors, with conductivities an order of magnitude higher than that of the parent compound.

4.
J Phys Chem Lett ; 12(45): 11158-11163, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34757748

RESUMO

Scanning transmission electron microscopy imaging of the MoVNbTe-oxide used as a catalyst for oxidative dehydrogenation and partial oxidation establishes anisotropic scattering projections of atom columns composed of Mo and V atoms which image the catalytically active S2 site and were predicted to be distorted by hybrid density functional theory calculations. These distortions of the S2 sites toward empty hexagonal channels created by the removal of [TeO]2+ entities experimentally corroborate that controlled partial occupancy of (TeO)n chains in the hexagonal channels of the MoVNbO-framework provides a means to introduce polarons and thereby increase the catalytic reactivity and selectivity of this catalyst.

5.
Nanoscale ; 12(33): 17462-17469, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32804184

RESUMO

A novel strategy of using hydrostatic pressures to synthesize gold-carbon (Au-C) nanohybrid materials is explored. The stable face-centered-cubic (fcc) Au undergoes a structural phase transition to a mixture of primitive orthorhombic and cubic phases as the carbon phase acquires a highly ordered onion-like carbon (OLC) structure which encapsulates the Au nanoparticles, thereby exerting an additional pressure. Increasing the pressure results in a one dimensional (1-D) chain-like structure with the primitive cubic Au nanoparticles contained in an amorphous carbon matrix. The OLC structure allows the formation of quenchable Au nanoparticle phases with the primitive close packing and Au-C hybrids with new mesoscopic structures. Under pressure, we observe the formation of a hybrid material composed of a poorly conducting matrix made of amorphous carbon and conducting OLC-encapsulated Au nanoparticles. The electrical conductivity of this hybrid material under pressure reveals a percolation threshold. We present a new synthesis approach to explore the interplay between atomic and mesoscopic structures and the electrical conductivity of metal hybrid structures.

6.
Microsc Microanal ; 26(1): 46-52, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31839023

RESUMO

Taking advantage of recent advances in parallel computing, we studied compositional disorder along metal-oxygen atomic columns in a complex Mo,V-oxide bronze using multislice frozen-phonon calculations. Commonly, the virtual crystal approximation (VCA) is used to model compositional disorder at crystallographic sites in a unit cell for a number of different theoretical and experimental techniques. In the VCA, a weighted linear sum of atomic properties is used to approximate the model structure. When using the VCA, the extracted V content of Mo,V-O columns from experimental high-angle annular dark-field (HAADF) images will be about half the V content estimated from simulations, considering the distinct cation ordering. This discrepancy is larger than the spread of HAADF signals of different configurational orders at a given V concentration, which can be up to 20%. Certain "isophilic" atomic arrangements along the column can be distinguished from more random ones using HAADF-STEM imaging. The trends and ratios of the simulated intensity spreads due to different compositional ordering along 11 M-O columns along the c-axis of the Mo,V oxide bronze qualitatively match those observed in experimental HAADF-STEM data. Instrumental and sample-based noise adds to the variability but does not significantly distort the relative ratios of column intensity variation. We observed that we only required seven random configurations to represent the intensity variations along columns.

7.
ACS Omega ; 4(6): 10539-10547, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460152

RESUMO

Many aspects of nanostructured materials at high pressures are still unexplored. We present here, high-pressure structural behavior of two Zn2SnO4 nanomaterials with inverse spinel type, one a particle with size of ∼7 nm [zero dimensional (0-D)] and the other with a chain-like [one dimensional (1-D)] morphology. We performed in situ micro-Raman and synchrotron X-ray diffraction measurements and observed that the cation disordering of the 0-D nanoparticle is preserved up to ∼40 GPa, suppressing the reported martensitic phase transformation. On the other hand, an irreversible phase transition is observed from the 1-D nanomaterial into a new and dense high-pressure orthorhombic CaFe2O4-type structure at ∼40 GPa. The pressure-treated 0-D and 1-D nanomaterials have distinct diffuse reflectance and emission properties. In particular, a heterojunction between the inverse spinel and quenchable orthorhombic phases allows the use of 1-D Zn2SnO4 nanomaterials as efficient photocatalysts as shown by the degradation of the textile pollutant methylene blue.

8.
ACS Appl Mater Interfaces ; 11(26): 23482-23494, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31179681

RESUMO

Nanoscale galvanic exchange confined by metallic nanoparticles is an intriguing structure-remodeling process that transforms geometrically simple solid nanoparticles into multimetallic hollow nanoparticles with increased structural complexity and compositional diversity. Using liquid polyols with intrinsic reducing capabilities as the reaction medium for nanoparticle-templated galvanic exchange represents an interesting paradigm shift, allowing us to interface galvanic exchange with oxidative etching and seed-mediated deposition without introducing any additional oxidizing or reducing agents. By kinetically maneuvering the interplay among galvanic Cu-Pt exchange, oxidative Cu etching, and seed-mediated Pt deposition, we have been able to selectively transform AuCu3 alloy nanoparticles into two architecturally distinct multimetallic heteronanostructures, namely, Au-Pt alloy skin-covered spongy nanoparticles and Pt nanodendrite-covered hollow nanoparticles, both of which exhibit unique structural features highly desirable for high-performance electrocatalysis. Using the formic acid oxidation and hydrogen evolution reactions in acidic electrolytes as model electrocatalytic reactions, we show that the multimetallic nanoparticles derived from AuCu3 alloy nanoparticles through polyol-mediated galvanic exchange reactions markedly outperform the commercial Pt/C benchmark catalysts in terms of both activity and durability. This work not only provides important mechanistic insights on how galvanic exchange dynamically interplays with other redox processes to rigorously dictate the versatile structural transformations of multimetallic nanoparticles but also sheds light on the detailed structure-property relationships underpinning the intriguing electrocatalytic behaviors of architecturally complex multimetallic heteronanostructures.

9.
Nat Commun ; 9(1): 5412, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575737

RESUMO

In-situ high-pressure synchrotron X-ray powder diffraction studies up to 21 GPa of CVD-grown silicon 2D-nanosheets establish that the structural phase transitions depend on size and shape. For sizes between 9.3(7) nm and 15.2(8) nm we observe an irreversible phase transition sequence from I (cubic) → II (tetragonal) → V (hexagonal) during pressure increase and during decompression below 8 GPa the emergence of an X-ray amorphous phase. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and atomic force microscopy (AFM) images of this X-ray amorphous phase reveal the formation of significant numbers of 1D nanowires with aspect ratios > 10, which are twinned and grow along the <111> direction. We discovered a reduction of dimensionality under pressure from a 2D morphology to a 1D wire in a material with a diamond structure. MD simulations indicate the reduction of thermal conductivity in such nanowires.

10.
Adv Struct Chem Imaging ; 4(1): 9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148045

RESUMO

We report frozen phonon multi-slice image simulations for the complex oxidation catalyst M1. Quantitative analysis of the simulations suggests that the detailed order of the cations along the electron propagation direction in a [001] zone axis orientation can lead to different high-angle annular dark field signals from atomic columns with identical composition. The annular dark field signal varies linearly with atomic percent V, and the spread of intensities due to the atomic species order is of similar magnitude to the intensity difference due to ± 5% V.

11.
Chemistry ; 24(5): 1041-1045, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29239500

RESUMO

Ag+ -Exchanged LSX (Ag-LSX: Ag96 Al96 Si96 O384 ⋅n H2 O), a large pore low silica analogue (Si/Al=1.0) of faujasite, was prepared and post-synthetically modified using pressure and temperature in the presence of various pore-penetrating fluids. Using high-resolution synchrotron X-ray powder and single crystal diffraction we derive structural models of the as-prepared and post-synthetically modified Ag-LSX materials. In the as-prepared Ag-LSX model, we located 96 silver cations and 245 H2 O molecules distributed over seven and five distinctive sites, respectively. At 1.4(1) GPa pressure and 150 °C in ethanol the number of silver cations within the pores of Ag-LSX is reduced by ca. 47.4 %, whereas the number of H2 O molecules is increased by ca. 40.8 %. The formation of zero-valent silver nanoparticles deposited on Ag-LSX crystallites depends on the fluid present during pressurization. Ag-nanoparticle-Ag-zeolite hybrid materials are recovered after pressure release and shown to have different chemical reactivity when used as catalysts for ethylene epoxidation.

12.
ACS Nano ; 10(2): 2960-74, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26795706

RESUMO

While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure-property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair of surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.

13.
Dalton Trans ; 45(4): 1622-30, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26692276

RESUMO

We report on high-pressure and high-temperature chemical transformations of Pb(2+)-exchanged natrolite (Pb-NAT, Pb8Al16Si24O80·16H2O) using a combination of in situ synchrotron X-ray powder diffraction and ex situ HAADF-STEM real space imaging. Three high-pressure polymorphs of natrolites (Pb-NAT-I, II, III) are observed via step-wise pressure-induced hydrations (PIH) up to 4.5 GPa, during which the number of H2O molecules located inside the natrolite channel increases from 16 to 40 H2O per unit-cell. At 4.5 GPa after heating the high-pressure Pb-NAT-III phase at 200 °C a reconstructive phase transits into a lawsonite phase (Pb-LAW, Pb4Al8Si8O28(OH)8·4H2O) with an orthorhombic space group Pbnm and a = 5.8216(9), b = 9.114(1) and c = 13.320(1) Å is observed. The structure of the recovered Pb-LAW phase was characterized using Rietveld refinement of the in situ synchrotron X-ray powder diffraction data and HAADF-STEM real space imaging. In the recovered Pb-LAW phase the Pb(2+) content is close to 42 wt% and as bond valence approximations reveal the Pb(2+) cations are more tightly coordinated to the framework oxygen atoms than originally in the natrolite phase.

14.
Chem Sci ; 7(9): 5671-5679, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30034705

RESUMO

This article illustrates the use of gel permeation chromatography (GPC, organic-phase size exclusion chromatography) to separate nanocrystals from weakly-bound small molecules, including solvent, on the basis of size. A variety of colloidal inorganic nanocrystals of different size, shape, composition, and surface termination are shown to yield purified samples with greatly reduced impurity concentrations. Additionally, the method is shown to be useful in achieving a change of solvent without requiring precipitation of the nanocrystals. By taking advantage of the different rates at which small molecules and nanoparticles travel through the column, we show that it is furthermore possible to use the GPC column as a multi-functional flow reactor that can accomplish in sequence the steps of initial purification, ligand exchange with controlled reactant concentration and interaction time, and subsequent cleanup without requiring a change of phase. This example of process intensification via GPC is shown to yield nearly complete displacement of the initial surface ligand population upon reaction with small molecule and macromolecular reactants to form ligand-exchanged nanocrystal products.

15.
Sci Rep ; 5: 15056, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26455345

RESUMO

Systematic studies of pressure-induced amorphization of natrolites (PIA) containing monovalent extra-framework cations (EFC) Li(+), Na(+), K(+), Rb(+), Cs(+) allow us to assess the role of two different EFC-H2O configurations within the pores of a zeolite: one arrangement has H2O molecules (NATI) and the other the EFC (NATII) in closer proximity to the aluminosilicate framework. We show that NATI materials have a lower onset pressure of PIA than the NATII materials containing Rb and Cs as EFC. The onset pressure of amorphization (PA) of NATII materials increases linearly with the size of the EFC, whereas their initial bulk moduli (P1 phase) decrease linearly. Only Cs- and Rb-NAT reveal a phase separation into a dense form (P2 phase) under pressure. High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging shows that after recovery from pressures near 25 and 20 GPa long-range ordered Rb-Rb and Cs-Cs correlations continue to be present over length scales up to 100 nm while short-range ordering of the aluminosilicate framework is significantly reduced-this opens a new way to form anti-glass structures.

16.
Environ Sci Technol ; 49(1): 513-9, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25515673

RESUMO

We report here a pressure-driven metathesis reaction where Ag-exchanged natrolite (Ag16Al16Si24O80·16H2O, Ag-NAT) is pressurized in an aqueous CsI solution, resulting in the exchange of Ag(+) by Cs(+) in the natrolite framework forming Cs16Al16Si24O80·16H2O (Cs-NAT-I) and, above 0.5 GPa, its high-pressure polymorph (Cs-NAT-II). During the initial cation exchange, the precipitation of AgI occurs. Additional pressure and heat at 2 GPa and 160 °C transforms Cs-NAT-II to a pollucite-related, highly dense, and water-free triclinic phase with nominal composition CsAlSi2O6. At ambient temperature after pressure release, the Cs remains sequestered in a now monoclinic pollucite phase at close to 40 wt % and a favorably low Cs leaching rate under back-exchange conditions. This process thus efficiently combines the pressure-driven separation of Cs and I at ambient temperature with the subsequent sequestration of Cs under moderate pressures and temperatures in its preferred waste form suitable for long-term storage at ambient conditions. The zeolite pollucite CsAlSi2O6·H2O has been identified as a potential host material for nuclear waste remediation of anthropogenic (137)Cs due to its chemical and thermal stability, low leaching rate, and the large amount of Cs it can contain. The new water-free pollucite phase we characterize during our process will not display radiolysis of water during longterm storage while maintaining the Cs content and low leaching rate.


Assuntos
Césio/isolamento & purificação , Troca Iônica , Silicatos/química , Prata/química , Zeolitas/química , Cátions , Césio/química , Iodetos/síntese química , Pressão , Resíduos Radioativos , Compostos de Prata/síntese química , Temperatura , Gerenciamento de Resíduos , Água/química
17.
Nat Chem ; 6(9): 835-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25143221

RESUMO

Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag(+) is reduced to metallic Ag and possibly oxidized to Ag(2+). In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.

18.
Nano Lett ; 14(6): 3674-82, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24842375

RESUMO

Noble metal nanoparticles have been of tremendous interest due to their intriguing size- and shape-dependent plasmonic and catalytic properties. Combining tunable plasmon resonances with superior catalytic activities on the same metallic nanoparticle, however, has long been challenging because nanoplasmonics and nanocatalysis typically require nanoparticles in two drastically different size regimes. Here, we demonstrate that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, we have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high-index facets abundant on the particle surfaces. The nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time-resolved plasmon-enhanced spectroscopic measurements.

19.
Ultramicroscopy ; 138: 46-56, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509163

RESUMO

The extraordinary improvements of modern imaging devices offer access to data with unprecedented information content. However, widely used image processing methodologies fall far short of exploiting the full breadth of information offered by numerous types of scanning probe, optical, and electron microscopies. In many applications, it is necessary to keep measurement intensities below a desired threshold. We propose a methodology for extracting an increased level of information by processing a series of data sets suffering, in particular, from high degree of spatial uncertainty caused by complex multiscale motion during the acquisition process. An important role is played by a non-rigid pixel-wise registration method that can cope with low signal-to-noise ratios. This is accompanied by formulating objective quality measures which replace human intervention and visual inspection in the processing chain. Scanning transmission electron microscopy of siliceous zeolite material exhibits the above-mentioned obstructions and therefore serves as orientation and a test of our procedures.

20.
Ultramicroscopy ; 112(1): 69-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22104023

RESUMO

Multislice frozen phonon calculations were performed on a model structure of a complex oxide which has potential use as an ammoxidation catalyst. The structure has 11 cation sites in the framework, several of which exhibit mixed Mo/V substitution. In this paper the sensitivity of high-angle annular dark-field (HAADF) imaging to partial substitution of V for Mo in this structure is reported. While the relationship between the average V content in an atom column and the HAADF image intensity is not independent of thickness, it is a fairly weak function of thickness suggesting that HAADF STEM imaging in certain cases can provide a useful starting point for Rietveld refinements of mixed occupancy in complex materials. The thermal parameters of the various cations and oxygen anions in the model affect the amount of thermal diffuse scattering and therefore the intensity in the HAADF images. For complex materials where the structure has been derived via powder Rietveld refinement, the uncertainty in the thermal parameters may limit the accuracy of HAADF image simulations. With the current interest in quantitative microscopy, simulations need to accurately describe the electron scattering to the very high angles often subtended by a HAADF detector. For this system approximately 15% of the scattering occurs above 200 mrad at 200 kV. To simulate scattering to such high angles, very fine sampling of the projected potential is necessary which increases the computational cost of the simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...