Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 20(7): 1707-15, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10894807

RESUMO

The regulation of nonenzymatic and enzymatic lipid oxidation reactions by nitric oxide (.NO) is potent and pervasive and reveals novel non-cGMP-dependent reactivities for this free radical inflammatory and signal transduction mediator.NO and its metabolites stimulate and inhibit lipid peroxidation reactions, modulate enzymatically catalyzed lipid oxidation, complex with lipid-reactive metals, and alter proinflammatory gene expression. Through these mechanisms,.NO can regulate nonenzymatic lipid oxidation and the production of inflammatory and vasoactive eicosanoids by prostaglandin endoperoxide synthase and lipoxygenase. The accumulation of macrophages and oxidized low density lipoprotein within the vascular wall can also be modulated by.NO. A key determinant of the pro-oxidant versus oxidant-protective influences of.NO is the underlying oxidative status of tissue. When.NO is in excess of surrounding oxidants, lipid oxidation and monocyte margination into the vascular wall are attenuated, producing antiatherogenic effects. However, when endogenous tissue rates of oxidant production are accelerated or when tissue oxidant defenses become depleted,.NO gives rise to secondary oxidizing species that can increase membrane and lipoprotein lipid oxidation as well as foam cell formation in the vasculature, thus promoting proatherogenic effects. In summary,.NO is a multifaceted molecule capable of reacting via multiple pathways to modulate lipid oxidation reactions, thereby impacting on tissue inflammatory reactions.


Assuntos
Arteriosclerose/metabolismo , Endotélio Vascular/enzimologia , Lipoproteínas/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Animais , Radicais Livres/metabolismo , Humanos , Metabolismo dos Lipídeos , Nitratos/metabolismo , Oxirredução
2.
Free Radic Biol Med ; 28(7): 1017-29, 2000 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10832063

RESUMO

Manganese porphyrin complexes serve to catalytically scavenge superoxide, hydrogen peroxide, and peroxynitrite. Herein, reactions of manganese 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) with lipids and lipid hydroperoxides (LOOH) are examined. In linoleic acid and human low-density lipoprotein (LDL), MnTE-2-PyP(5+) promotes oxidative reactions when biological reductants are not present. By redox cycling between Mn(+3) and Mn(+4) forms, MnTE-2-PyP(5+) initiates lipid peroxidation via decomposition of 13(S)hydroperoxyoctadecadienoic acid [13(S)HPODE], with a second-order rate constant of 8.9 x 10(3) M(-1)s(-1)and k(cat) = 0.32 s(-1). Studies of LDL oxidation demonstrate that: (i) MnTE-2-PyP(5+) can directly oxidize LDL, (ii) MnTE-2-PyP(5+) does not inhibit Cu-induced LDL oxidation, and (iii) MnTE-2-PyP(5+) plus a reductant partially inhibit lipid peroxidation. MnTE-2-PyP(5+) (1-5 microM) also significantly inhibits FeCl(3) plus ascorbate-induced lipid peroxidation of rat brain homogenate. In summary, MnTE-2-PyP(5+) initiates membrane lipid and lipoprotein oxidation in the absence of biological reductants, while MnTE-2-PyP(5+) inhibits lipid oxidation reactions initiated by other oxidants when reductants are present. It is proposed that, as the Mn(+3) resting redox state of MnTE-2-PyP(5+) becomes oxidized to the Mn(+4) redox state, LOOH is decomposed to byproducts that propagate lipid oxidation reactions. When the manganese of MnTE-2-PyP(5+) is reduced to the +2 state by biological reductants, antioxidant reactions of the metalloporphyrin are favored.


Assuntos
Lipídeos/química , Lipoproteínas/química , Manganês/química , Metaloporfirinas/química , Animais , Química Encefálica/efeitos dos fármacos , Catálise , Cromatografia em Camada Fina , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Ácido Linoleico/química , Ácidos Linoleicos/química , Peroxidação de Lipídeos , Peróxidos Lipídicos/química , Lipoproteínas LDL/sangue , Masculino , Espectrometria de Massas , Metaloporfirinas/farmacologia , Oxirredução , Ratos , Ratos Sprague-Dawley
3.
J Biol Chem ; 274(29): 20083-91, 1999 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-10400618

RESUMO

Analysis of purified soybean and rabbit reticulocyte 15-lipoxygenase (15-LOX) and PA317 cells transfected with human 15-LOX revealed a rapid rate of linoleate-dependent nitric oxide (.NO) uptake that coincided with reversible inhibition of product ((13S)-hydroperoxyoctadecadienoic acid, or (13S)-HPODE) formation. No reaction of .NO (up to 2 microM) with either native (Ered) or ferric LOXs (0.2 microM) metal centers to form nitrosyl complexes occurred at these .NO concentrations. During HPODE-dependent activation of 15-LOX, there was consumption of 2 mol of .NO/mol of 15-LOX. Stopped flow fluorescence spectroscopy showed that.NO (2.2 microM) did not alter the rate or extent of (13S)-HPODE-induced tryptophan fluorescence quenching associated with 15-LOX activation. Additionally, .NO does not inhibit the anaerobic peroxidase activity of 15-LOX, inferring that the inhibitory actions of .NO are due to reaction with the enzyme-bound lipid peroxyl radical, rather than impairment of (13S)-HPODE-dependent enzyme activation. From this, a mechanism of 15-LOX inhibition by .NO is proposed whereby reaction of .NO with EredLOO. generates Ered and LOONO, which hydrolyzes to (13S)-HPODE and nitrite (NO2-). Reactivation of Ered, considerably slower than dioxygenase activity, is then required to complete the catalytic cycle and leads to a net inhibition of rates of (13S)-HPODE formation. This reaction of .NO with 15-LOX inhibited. NO-dependent activation of soluble guanylate cyclase and consequent cGMP production. Since accelerated .NO production, enhanced 15-LOX gene expression, and 15-LOX product formation occurs in diverse inflammatory conditions, these observations indicate that reactions of .NO with lipoxygenase peroxyl radical intermediates will result in modulation of both .NO bioavailability and rates of production of lipid signaling mediators.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Animais , Araquidonato 15-Lipoxigenase/genética , Catálise , Ativação Enzimática , Humanos , Cinética , Ácido Linoleico/metabolismo , Oxirredução , Coelhos , Glycine max/enzimologia , Transfecção
4.
Methods Enzymol ; 301: 454-70, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-9919594

RESUMO

Reactions of linoleate (and presumably other unsaturated fatty acids) with reactive nitrogen species that form in biological systems from secondary reactions of .NO yield two main nitration product groups, LNO2 (formed by ONOO-, .NO2, or NO2+ reaction with linoleate), and LONO2 (formed by HONO reaction with 13(S)-HPODE, or .NO termination with LOO.). Comparison of HPLC retention times and m/z for lipid nitration products indicate that the mechanisms of nitrated product formation converge at several points: (i) The initial product of HONO attack on LOOH will be LOONO, which is identical to the initial termination product of LOO. reaction with .NO. (ii) Dissociation of LOONO to give LO. and .NO2 via caged radicals, which recombine to give LONO2 (m/z 340) will occur, regardless of how LOONO is formed (Fig. 7). (iii) In some experiments, the reaction of O2- (where oxidation is initiated by xanthine oxidase-derived O2- production and metal-dependent decomposition of H2O2) with .NO will result in generation of ONOO-. Nitration of unsaturated lipid by this species will yield a species demonstrated herein to be LNO2. Lipid oxidation leads to formation of bioactive products, including hydroxides, hydroperoxides, and isoprostanes. In vivo, nitrated lipids (LNO2, LONO2) may also possess bioactivity, for example through eicosanoid receptor binding activity, or by acting as antagonists/competitive inhibitors of eicosanoid receptor-ligand interactions. In addition, nitrated lipids could mediate signal transduction via direct .NO donation, transnitrosation, or following reductive metabolism. Similar bioactive products are formed following ONOO- reaction with glucose, glycerol, and other biomolecules.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Óxido Nítrico/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Radicais Livres/metabolismo , Humanos , Peroxidação de Lipídeos , Nitratos/metabolismo , Dióxido de Nitrogênio/metabolismo , Ácido Nitroso/metabolismo
5.
Biochemistry ; 36(49): 15216-23, 1997 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-9398249

RESUMO

The reaction between nitric oxide (*NO) and lipid peroxyl radicals (LOO*) has been proposed to account for the potent inhibitory properties of *NO toward lipid peroxidation processes; however, the mechanisms of this reaction, including kinetic parameters and nature of termination products, have not been defined. Here, the reaction between linoleate peroxyl radicals and *NO was examined using 2, 2'-azobis(2-amidinopropane) hydrochloride-dependent oxidation of linoleate. Addition of *NO (0.5-20 microM) to peroxidizing lipid led to cessation of oxygen uptake, which resumed at original rates when all *NO had been consumed. At high *NO concentrations (>3 microM), the time of inhibition (Tinh) of chain propagation became increasingly dependent on oxygen concentration, due to the competing reaction of oxygen with *NO. Kinetic analysis revealed that a simple radical-radical termination reaction (*NO:ROO* = 1:1) does not account for the inhibition of lipid oxidation by *NO, and at least two molecules of *NO are consumed per termination reaction. A mechanism is proposed whereby *NO first reacts with LOO* (k = 2 x 10(9) M-1 s-1) to form LOONO. Following decomposition of LOONO to LO* and *NO2, a second *NO is consumed via reaction with LO*, with the composite rate constant for this reaction being k = 7 x 10(4) M-1 s-1. At equal concentrations, greater inhibition of oxidation was observed with *NO than with alpha-tocopherol. Since *NO reacts with LOO* at an almost diffusion-limited rate, steady state concentrations of 30 nM *NO would effectively compete with endogenous alpha-tocopherol concentrations (about 20 microM) as a scavenger of LOO* in the lipid phase. This indicates that biological *NO concentrations (up to 2 microM) will significantly influence peroxidation reactions in vivo.


Assuntos
Peroxidação de Lipídeos , Peróxidos Lipídicos/química , Óxido Nítrico/química , Vitamina E/química , Simulação por Computador , Radicais Livres , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...