Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 4977, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862531

RESUMO

Quantum processor architectures must enable scaling to large qubit numbers while providing two-dimensional qubit connectivity and exquisite operation fidelities. For microwave-controlled semiconductor spin qubits, dense arrays have made considerable progress, but are still limited in size by wiring fan-out and exhibit significant crosstalk between qubits. To overcome these limitations, we introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence. Device simulations for all relevant operations in the Si/SiGe platform validate the feasibility with established semiconductor patterning technology and operation fidelities exceeding 99.9%. Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits. Building on the theoretical feasibility of high-fidelity spin-coherent electron shuttling as key enabling factor, the SpinBus architecture may be the basis for a spin-based quantum processor that meets the scalability requirements for practical quantum computing.

3.
J Phys Chem B ; 128(15): 3755-3763, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38578662

RESUMO

We present a combined Langmuir-Pockels trough and ambient pressure X-ray photoelectron spectroscopy (APXPS) study of the compression of stearic acid surfactant layers on neat water. Changes in the packing density of the molecules are directly determined from C 1s and O 1s APXPS data. The experimental data are fit with a 2D model for the stearic acid coverage. Based on the results of these proof-of-principle experiments, we discuss the remaining challenges that need to be overcome for future investigations of the role of surfactants in heterogeneous chemical reactions at liquid-vapor interfaces in combined Langmuir-Pockels trough and APXPS measurements.

4.
Nat Commun ; 15(1): 2296, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485971

RESUMO

The connectivity within single carrier information-processing devices requires transport and storage of single charge quanta. Single electrons have been adiabatically transported while confined to a moving quantum dot in short, all-electrical Si/SiGe shuttle device, called quantum bus (QuBus). Here we show a QuBus spanning a length of 10 µm and operated by only six simply-tunable voltage pulses. We introduce a characterization method, called shuttle-tomography, to benchmark the potential imperfections and local shuttle-fidelity of the QuBus. The fidelity of the single-electron shuttle across the full device and back (a total distance of 19 µm) is (99.7 ± 0.3) %. Using the QuBus, we position and detect up to 34 electrons and initialize a register of 34 quantum dots with arbitrarily chosen patterns of zero and single-electrons. The simple operation signals, compatibility with industry fabrication and low spin-environment-interaction in 28Si/SiGe, promises long-range spin-conserving transport of spin qubits for quantum connectivity in quantum computing architectures.

5.
Nat Commun ; 15(1): 1325, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351007

RESUMO

Long-ranged coherent qubit coupling is a missing function block for scaling up spin qubit based quantum computing solutions. Spin-coherent conveyor-mode electron-shuttling could enable spin quantum-chips with scalable and sparse qubit-architecture. Its key feature is the operation by only few easily tuneable input terminals and compatibility with industrial gate-fabrication. Single electron shuttling in conveyor-mode in a 420 nm long quantum bus has been demonstrated previously. Here we investigate the spin coherence during conveyor-mode shuttling by separation and rejoining an Einstein-Podolsky-Rosen (EPR) spin-pair. Compared to previous work we boost the shuttle velocity by a factor of 10000. We observe a rising spin-qubit dephasing time with the longer shuttle distances due to motional narrowing and estimate the spin-shuttle infidelity due to dephasing to be 0.7% for a total shuttle distance of nominal 560 nm. Shuttling several loops up to an accumulated distance of 3.36 µm, spin-entanglement of the EPR pair is still detectable, giving good perspective for our approach of a shuttle-based scalable quantum computing architecture in silicon.

6.
Ecol Evol ; 13(9): e10484, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37664516

RESUMO

Monitoring is a prerequisite for evidence-based wildlife management and conservation planning, yet conventional monitoring approaches are often ineffective for species occurring at low densities. However, some species such as large mammals are often observed by lay people and this information can be leveraged through citizen science monitoring schemes. To ensure that such wildlife monitoring efforts provide robust inferences, assessing the quantity, quality, and potential biases of citizen science data is crucial. For Eurasian moose (Alces alces), a species currently recolonizing north-eastern Germany and occurring in very low numbers, we applied three citizen science tools: a mail/email report system, a smartphone application, and a webpage. Among these monitoring tools, the mail/email report system yielded the greatest number of moose reports in absolute and in standardized (corrected for time effort) terms. The reported moose were predominantly identified as single, adult, male individuals, and reports occurred mostly during late summer. Overlaying citizen science data with independently generated habitat suitability and connectivity maps showed that members of the public detected moose in suitable habitats but not necessarily in movement corridors. Also, moose detections were often recorded near roads, suggestive of spatial bias in the sampling effort. Our results suggest that citizen science-based data collection can be facilitated by brief, intuitive digital reporting systems. However, inference from the resulting data can be limited due to unquantified and possibly biased sampling effort. To overcome these challenges, we offer specific recommendations such as more structured monitoring efforts involving the public in areas likely to be roamed by moose for improving quantity, quality, and analysis of citizen science-based data for making robust inferences.

7.
Phys Chem Chem Phys ; 25(33): 22538, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555358

RESUMO

Correction for 'Photoelectron angular distributions as sensitive probes of surfactant layer structure at the liquid-vapor interface' by Rémi Dupuy et al., Phys. Chem. Chem. Phys., 2022, 24, 4796-4808, https://doi.org/10.1039/D1CP05621B.

8.
Struct Dyn ; 10(3): 034901, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37398627

RESUMO

We present spatially resolved measurements of the temperature of a flat liquid water microjet for varying ambient pressures, from vacuum to 100% relative humidity. The entire jet surface is probed in a single shot by a high-resolution infrared camera. Obtained 2D images are substantially influenced by the temperature of the apparatus on the opposite side of the infrared camera; a protocol to correct for the thermal background radiation is presented. In vacuum, we observe cooling rates due to water evaporation on the order of 105 K/s. For our system, this corresponds to a temperature decrease in approximately 15 K between upstream and downstream positions of the flowing leaf. Making reasonable assumptions on the absorption of the thermal background radiation in the flatjet, we can extend our analysis to infer a thickness map. For a reference system, our value for the thickness is in good agreement with the one reported from white light interferometry.

9.
Acc Chem Res ; 56(3): 215-223, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695522

RESUMO

ConspectusPhotoelectron spectroscopy (PES) is a powerful tool for the investigation of liquid-vapor interfaces, with applications in many fields from environmental chemistry to fundamental physics. Among the aspects that have been addressed with PES is the question of how molecules and ions arrange and distribute themselves within the interface, that is, the first few nanometers into solution. This information is of crucial importance, for instance, for atmospheric chemistry, to determine which species are exposed in what concentration to the gas-phase environment. Other topics of interest include the surface propensity of surfactants, their tendency for orientation and self-assembly, as well as ion double layers beneath the liquid-vapor interface. The chemical specificity and surface sensitivity of PES make it in principle well suited for this endeavor. Ideally, one would want to access complete atomic-density distributions along the surface normal, which, however, is difficult to achieve experimentally for reasons to be outlined in this Account. A major complication is the lack of accurate information on electron transport and scattering properties, especially in the kinetic-energy regime below 100 eV, a pre-requisite to retrieving the depth information contained in photoelectron signals.In this Account, we discuss the measurement of the photoelectron angular distributions (PADs) as a way to obtain depth information. Photoelectrons scatter with a certain probability when moving through the bulk liquid before being expelled into a vacuum. Elastic scattering changes the electron direction without a change in the electron kinetic energy, in contrast to inelastic scattering. Random elastic-scattering events usually lead to a reduction of the measured anisotropy as compared to the initial, that is, nascent PAD. This effect that would be considered parasitic when attempting to retrieve information on photoionization dynamics from nascent liquid-phase PADs can be turned into a powerful tool to access information on elastic scattering, and hence probing depth, by measuring core-level PADs. Core-level PADs are relatively unaffected by effects other than elastic scattering, such as orbital character changes due to solvation. By comparing a molecule's gas-phase angular anisotropy, assumed to represent the nascent PAD, with its liquid-phase anisotropy, one can estimate the magnitude of elastic versus inelastic scattering experienced by photoelectrons on their way to the surface from the site at which they were generated. Scattering events increase with increasing depth into solution, and thus it is possible to correlate the observed reduction in angular anisotropy with the depth below the surface along the surface normal.We will showcase this approach for a few examples. In particular, our recent works on surfactant molecules demonstrated that one can indeed probe atomic distances within these molecules with a high sensitivity of ∼1 Šresolution along the surface normal. We were also able to show that the anisotropy reduction scales linearly with the distance along the surface normal within certain limits. The limits and prospects of this technique are discussed at the end, with a focus on possible future applications, including depth profiling at solid-vapor interfaces.

10.
J Am Chem Soc ; 144(37): 17173-17185, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36074011

RESUMO

We present a combined computational and experimental study of the adsorption of water on the Mo-doped BiVO4(010) surface, revealing how excess electrons influence the dissociation of water and lead to hydroxyl-induced alterations of the surface electronic structure. By comparing ambient pressure resonant photoemission spectroscopy (AP-ResPES) measurements with the results of first-principles calculations, we show that the dissociation of water on the stoichiometric Mo-doped BiVO4(010) surface stabilizes the formation of a small electron polaron on the VO4 tetrahedral site and leads to an enhanced concentration of localized electronic charge at the surface. Our calculations demonstrate that the dissociated water accounts for the enhanced V4+ signal observed in ambient pressure X-ray photoelectron spectroscopy and the enhanced signal of a small electron polaron inter-band state observed in AP-ResPES measurements. For ternary oxide surfaces, which may contain oxygen vacancies in addition to other electron-donating dopants, our study reveals the importance of defects in altering the surface reactivity toward water and the concomitant water-induced modifications to the electronic structure.

11.
Phys Chem Chem Phys ; 24(8): 4796-4808, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156668

RESUMO

The characterization of liquid-vapor interfaces at the molecular level is an important underpinning for a basic understanding of fundamental heterogeneous processes in many areas, such as atmospheric science. Here we use X-ray photoelectron spectroscopy to study the adsorption of a model surfactant, octanoic acid, at the water-gas interface. In particular, we examine the information contained in photoelectron angular distributions and show that information about the relative depth of molecules and functional groups within molecules can be obtained from these measurements. Focusing on the relative location of carboxylate (COO-) and carboxylic acid (COOH) groups at different solution pH, the former is found to be immersed deeper into the liquid-vapor interface, which is confirmed by classical molecular dynamics simulations. These results help establish photoelectron angular distributions as a sensitive tool for the characterization of molecules at the liquid-vapor interface.

12.
Phys Rev Lett ; 127(17): 170403, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739277

RESUMO

Many qubit implementations are afflicted by correlated noise not captured by standard theoretical tools that are based on Markov approximations. While independent gate operations are a key concept for quantum computing, it is actually not possible to fully describe noisy gates locally in time if noise is correlated on times longer than their duration. To address this issue, we develop a method based on the filter function formalism to perturbatively compute quantum processes in the presence of correlated classical noise. We derive a composition rule for the filter function of a sequence of gates in terms of those of the individual gates. The joint filter function allows us to efficiently compute the quantum process of the whole sequence. Moreover, we show that correlation terms arise which capture the effects of the concatenation and, thus, yield insight into the effect of noise correlations on gate sequences. Our generalization of the filter function formalism enables both qualitative and quantitative studies of algorithms and state-of-the-art tools widely used for the experimental verification of gate fidelities like randomized benchmarking, even in the presence of noise correlations.

14.
Sci Data ; 8(1): 220, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404811

RESUMO

Primary forests, defined here as forests where the signs of human impacts, if any, are strongly blurred due to decades without forest management, are scarce in Europe and continue to disappear. Despite these losses, we know little about where these forests occur. Here, we present a comprehensive geodatabase and map of Europe's known primary forests. Our geodatabase harmonizes 48 different, mostly field-based datasets of primary forests, and contains 18,411 individual patches (41.1 Mha) spread across 33 countries. When available, we provide information on each patch (name, location, naturalness, extent and dominant tree species) and the surrounding landscape (biogeographical regions, protection status, potential natural vegetation, current forest extent). Using Landsat satellite-image time series (1985-2018) we checked each patch for possible disturbance events since primary forests were identified, resulting in 94% of patches free of significant disturbances in the last 30 years. Although knowledge gaps remain, ours is the most comprehensive dataset on primary forests in Europe, and will be useful for ecological studies, and conservation planning to safeguard these unique forests.


Assuntos
Conservação dos Recursos Naturais , Florestas , Bases de Dados Factuais , Europa (Continente)
15.
Rev Sci Instrum ; 92(4): 044102, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243438

RESUMO

We have developed an experimental system to simultaneously measure surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring x-ray photoelectron spectroscopy (XPS) and grazing incidence x-ray scattering in gas pressures as high as the multi-Torr regime while also recording mass spectrometry. Scattering patterns reflect near-surface sample structures from the nano-scale to the meso-scale, and the grazing incidence geometry provides tunable depth sensitivity of structural measurements. Scattered x rays are detected across a broad range of angles using a newly designed pivoting-UHV-manipulator for detector positioning. At the same time, XPS and mass spectrometry can be measured, all from the same sample spot and under ambient conditions. To demonstrate the capabilities of this system, we measured the chemical state, composition, and structure of Ag-behenate on a Si(001) wafer in vacuum and in O2 atmosphere at various temperatures. These simultaneous structural, chemical, and gas phase product probes enable detailed insights into the interplay between the structure and chemical state for samples in gas phase environments. The compact size of our pivoting-UHV-manipulator makes it possible to retrofit this technique into existing spectroscopic instruments installed at synchrotron beamlines. Because many synchrotron facilities are planning or undergoing upgrades to diffraction limited storage rings with transversely coherent beams, a newly emerging set of coherent x-ray scattering experiments can greatly benefit from the concepts we present here.

16.
Nanotechnology ; 32(16): 162003, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33543734

RESUMO

Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a view to what the future holds. Materials and devices with nanoscale features are used for quantum metrology and sensing, as building blocks for quantum computing, and as sources and detectors for quantum communication. They enable explorations of quantum behaviour and unconventional states in nano- and opto-mechanical systems, low-dimensional systems, molecular devices, nano-plasmonics, quantum electrodynamics, scanning tunnelling microscopy, and more. This rapidly expanding intersection of nanotechnology and quantum science/technology is mutually beneficial to both fields, laying claim to some of the most exciting scientific leaps of the last decade, with more on the horizon.

17.
J Chem Phys ; 154(6): 060901, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33588531

RESUMO

Liquid-vapor interfaces, particularly those between aqueous solutions and air, drive numerous important chemical and physical processes in the atmosphere and in the environment. X-ray photoelectron spectroscopy is an excellent method for the investigation of these interfaces due to its surface sensitivity, elemental and chemical specificity, and the possibility to obtain information on the depth distribution of solute and solvent species in the interfacial region. In this Perspective, we review the progress that was made in this field over the past decades and discuss the challenges that need to be overcome for investigations of heterogeneous reactions at liquid-vapor interfaces under close-to-realistic environmental conditions. We close with an outlook on where some of the most exciting and promising developments might lie in this field.

18.
Adv Mater ; 33(4): e2004132, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33263190

RESUMO

The ability to tailor oxide heterointerfaces has led to novel properties in low-dimensional oxide systems. A fundamental understanding of these properties is based on the concept of electronic charge transfer. However, the electronic properties of oxide heterointerfaces crucially depend on their ionic constitution and defect structure: ionic charges contribute to charge transfer and screening at oxide interfaces, triggering a thermodynamic balance of ionic and electronic structures. Quantitative understanding of the electronic and ionic roles regarding charge-transfer phenomena poses a central challenge. Here, the electronic and ionic structure is simultaneously investigated at the prototypical charge-transfer heterointerface, LaAlO3 /SrTiO3 . Applying in situ photoemission spectroscopy under oxygen ambient, ionic and electronic charge transfer is deconvoluted in response to the oxygen atmosphere at elevated temperatures. In this way, both the rich and variable chemistry of complex oxides and the associated electronic properties are equally embraced. The interfacial electron gas is depleted through an ionic rearrangement in the strontium cation sublattice when oxygen is applied, resulting in an inverse and reversible balance between cation vacancies and electrons, while the mobility of ionic species is found to be considerably enhanced as compared to the bulk. Triggered by these ionic phenomena, the electronic transport and magnetic signature of the heterointerface are significantly altered.

19.
Nat Commun ; 11(1): 4144, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811818

RESUMO

Semiconductor spin qubits have recently seen major advances in coherence time and control fidelities, leading to a single-qubit performance that is on par with other leading qubit platforms. Most of this progress is based on microwave control of single spins in devices made of isotopically purified silicon. For controlling spins, the exchange interaction is an additional key ingredient which poses new challenges for high-fidelity control. Here, we demonstrate exchange-based single-qubit gates of two-electron spin qubits in GaAs double quantum dots. Using careful pulse optimization and closed-loop tuning, we achieve a randomized benchmarking fidelity of (99.50±0.04)% and a leakage rate of 0.13% out of the computational subspace. These results open new perspectives for microwave-free control of singlet-triplet qubits in GaAs and other materials.

20.
Phys Chem Chem Phys ; 22(27): 15658-15663, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32618298

RESUMO

Reverse osmosis using aromatic polyamide membranes is currently the most important technology for seawater desalination. The performance of reverse osmosis membranes is highly dependent on the interplay of their surface chemical groups with water and water contaminants. In order to better understand the underlying mechanisms of these membranes, we study ultrathin polyamide films that chemically resemble reverse osmosis membranes, using ambient pressure X-ray photoelectron spectroscopy. This technique can identify the functional groups at the membrane-water interface and allows monitoring of small shifts in the electron binding energy that indicate interaction with water. We observe deprotonation of free acid groups and formation of a 'water complex' with nitrogen groups in the polymer upon exposure of the membrane to water vapour. The chemical changes are reversed when water is removed from the membrane. While the correlation between functional groups and water uptake is an established one, this experiment serves to understand the nature of their chemical interaction, and opens up possibilities for tailoring future materials to specific requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...