Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 285: 121521, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523018

RESUMO

As central part of the innate immune response, immune cells fight against invaders through various mechanisms, such as the release of extracellular traps (ETs). While this mechanism is mainly known for neutrophils in biomaterial contact, the release of macrophage extracellular traps (METs) in response to biomaterials has not yet been reported. An important application area for biomaterials is bone, where healing of defects of a critical size requires the implantation of grafts, which are often composed of calcium phosphates (CaPs). In this study, the response of human monocyte-derived macrophages in vitro to two different CaPs (α-tricalcium phosphate (α-TCP) and calcium deficient hydroxyapatite (CDHA)) as well as different pore structures was investigated. Scaffolds with anisotropic porosity were prepared by directional freezing, while samples with isotropic pore structure served as reference. It was revealed that ETs are released by human monocyte-derived macrophages in direct or indirect contact with CaP scaffolds. This was caused by mineral nanoparticles formed during incubation of α-TCP samples in culture medium supplemented with human platelet lysate, with an anisotropic pore structure attenuating MET formation. METs were significantly less pronounced or absent in association with CDHA samples. It was furthermore demonstrated that MET formation was accompanied by an increase in pro-inflammatory cytokines. Thus, this study provided the first evidence that macrophages are capable of releasing ETs in response to biomaterials.


Assuntos
Armadilhas Extracelulares , Materiais Biocompatíveis , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Durapatita/química , Humanos , Macrófagos
2.
Adv Mater ; 33(33): e2101228, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34240485

RESUMO

Supplement-free induction of cellular differentiation and polarization solely through the topography of materials is an auspicious strategy but has so far significantly lagged behind the efficiency and intensity of media-supplementation-based protocols. Consistent with the idea that 3D structural motifs in the extracellular matrix possess immunomodulatory capacity as part of the natural healing process, it is found in this study that human-monocyte-derived macrophages show a strong M2a-like prohealing polarization when cultured on type I rat-tail collagen fibers but not on collagen I films. Therefore, it is hypothesized that highly aligned nanofibrils also of synthetic polymers, if packed into larger bundles in 3D topographical biomimetic similarity to native collagen I, would induce a localized macrophage polarization. For the automated fabrication of such bundles in a 3D printing manner, the strategy of "melt electrofibrillation" is pioneered by the integration of flow-directed polymer phase separation into melt electrowriting and subsequent selective dissolution of the matrix polymer postprocessing. This process yields nanofiber bundles with a remarkable structural similarity to native collagen I fibers, particularly for medical-grade poly(ε-caprolactone). These biomimetic fibrillar structures indeed induce a pronounced elongation of human-monocyte-derived macrophages and unprecedentedly trigger their M2-like polarization similar in efficacy as interleukin-4 treatment.


Assuntos
Materiais Biomiméticos/química , Colágeno/química , Citocinas/química , Agentes de Imunomodulação/química , Poliésteres/química , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Colágeno/metabolismo , Citocinas/genética , Citocinas/metabolismo , Matriz Extracelular/efeitos dos fármacos , Humanos , Agentes de Imunomodulação/metabolismo , Imunomodulação , Macrófagos/citologia , Receptor de Manose/genética , Receptor de Manose/metabolismo , Nanofibras/química , Polivinil/química , Impressão Tridimensional , Ratos , Engenharia Tecidual
3.
ACS Biomater Sci Eng ; 7(7): 3166-3178, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34114792

RESUMO

Endowing materials and scaffolds with immunomodulatory properties has evolved into a very active field of research. However, combining such effects with multifunctionality regarding cell adhesion and manipulation is still challenging due to the intricate nature of cell-substrate interactions that require fine-tuning of scaffold properties. Here, we reported electrospinning of a well-known biopolymer, gelatin, together with six-arm star-shaped poly(ethylene oxide-stat-propylene oxide) prepolymer with isocyanate end groups (NCO-sP(EO-stat-PO)) as a reactive prepolymer cross-linker. Covalent coupling of two components during and after processing yielded a network of hydrogel fibers that was remarkably stable under aqueous and also proteolytic conditions without the need for extra cross-linking, with a significant increase in stability with increasing NCO-sP(EO-stat-PO) content. When seeded with human macrophages, cells adhered and spread on the fibers and were found highly viable after 7 days of culture across all scaffolds. Furthermore, hybrid fibrous meshes upregulated the expression of a prohealing gene, CD206, while downregulating proinflammatory genes, IL-1ß and IL-8. Markedly, NCO-sP(EO-stat-PO)-rich samples induced a significantly reduced release of proinflammatory cytokines, IL-1ß, IL-6, and IL-8. Finally, we successfully conjugated IL-4 to NCO-sP(EO-stat-PO) that effectively steered macrophages into a prohealing M2 type, demonstrating additional and robust control over the immunomodulatory feature of the scaffolds.


Assuntos
Gelatina , Nanofibras , Adesão Celular , Humanos , Hidrogéis , Macrófagos
4.
Small ; 17(13): e2007551, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33690981

RESUMO

Biointerface engineering is a wide-spread strategy to improve the healing process and subsequent tissue integration of biomaterials. Especially the integration of specific peptides is one promising strategy to promote the regenerative capacity of implants and 3D scaffolds. In vivo, these tailored interfaces are, however, first confronted with the innate immune response. Neutrophils are cells with pronounced proteolytic potential and the first recruited immune cells at the implant site; nonetheless, they have so far been underappreciated in the design of biomaterial interfaces. Herein, an in vitro approach is introduced to model and analyze the neutrophil interaction with bioactivated materials at the example of nano-bioinspired electrospun surfaces that reveals the vulnerability of a given biointerface design to the contact with neutrophils. A sacrificial, transient hydrogel coating that demonstrates optimal protection for peptide-modified surfaces and thus alleviates the immediate cleavage by neutrophil elastase is further introduced.


Assuntos
Materiais Biocompatíveis , Elastase de Leucócito , Humanos , Hidrogéis , Imunidade Inata , Neutrófilos
5.
3D Print Addit Manuf ; 8(5): 315-321, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654937

RESUMO

Melt electrowriting (MEW) is an aspiring 3D printing technology with an unprecedented resolution among fiber-based printing technologies. It offers the ability to direct-write predefined designs utilizing a jet of molten polymer to fabricate constructs composed of fibers with diameters of only a few micrometers. These dimensions enable unique construct properties. Poly(ɛ-caprolactone) (PCL), a semicrystalline polymer mainly used for biomedical and life science applications, is the most prominent material for MEW and exhibits excellent printing properties. Despite the wealth of melt electrowritten constructs that have been fabricated by MEW, a detailed investigation, especially regarding fiber analysis on a macro- and microlevel is still lacking. Hence, this study systematically examines the influence of process parameters such as spinneret diameter, feeding pressure, and collector velocity on the diameter and particularly the topography of PCL fibers and sheds light on how these parameters affect the mechanical properties and crystallinity. A correlation between the mechanical properties, crystallite size, and roughness of the deposited fiber, depending on the collector velocity and applied feeding pressure, is revealed. These findings are used to print constructs composed of fibers with different microtopography without affecting the fiber diameter and thus the macroscopic assembly of the printed constructs.

6.
Biofabrication ; 12(2): 025007, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31805543

RESUMO

Macrophages are key players of the innate immune system that can roughly be divided into the pro-inflammatory M1 type and the anti-inflammatory, pro-healing M2 type. While a transient initial pro-inflammatory state is helpful, a prolonged inflammation deteriorates a proper healing and subsequent regeneration. One promising strategy to drive macrophage polarization by biomaterials is precise control over biomaterial geometry. For regenerative approaches, it is of particular interest to identify geometrical parameters that direct human macrophage polarization. For this purpose, we advanced melt electrowriting (MEW) towards the fabrication of fibrous scaffolds with box-shaped pores and precise inter-fiber spacing from 100 µm down to only 40 µm. These scaffolds facilitate primary human macrophage elongation accompanied by differentiation towards the M2 type, which was most pronounced for the smallest pore size of 40 µm. These new findings can be important in helping to design new biomaterials with an enhanced positive impact on tissue regeneration.


Assuntos
Macrófagos/citologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Diferenciação Celular , Polaridade Celular , Humanos , Macrófagos/imunologia , Porosidade
7.
Adv Healthc Mater ; 8(7): e1801326, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30835969

RESUMO

Melt electrowriting (MEW) is an additive manufacturing technology that is recently used to fabricate voluminous scaffolds for biomedical applications. In this study, MEW is adapted for the seeding of multicellular spheroids, which permits the easy handling as a single sheet-like tissue-scaffold construct. Spheroids are made from adipose-derived stromal cells (ASCs). Poly(ε-caprolactone) is processed via MEW into scaffolds with box-structured pores, readily tailorable to spheroid size, using 13-15 µm diameter fibers. Two 7-8 µm diameter "catching fibers" near the bottom of the scaffold are threaded through each pore (360 and 380 µm) to prevent loss of spheroids during seeding. Cell viability remains high during the two week culture period, while the differentiation of ASCs into the adipogenic lineage is induced. Subsequent sectioning and staining of the spheroid-scaffold construct can be readily performed and accumulated lipid droplets are observed, while upregulation of molecular markers associated with successful differentiation is demonstrated. Tailoring MEW scaffolds with pores allows the simultaneous seeding of high numbers of spheroids at a time into a construct that can be handled in culture and may be readily transferred to other sites for use as implants or tissue models.


Assuntos
Engenharia Tecidual , Alicerces Teciduais/química , Adipogenia/efeitos dos fármacos , Tecido Adiposo/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Gotículas Lipídicas/metabolismo , Poliésteres/química , Porosidade , Impressão Tridimensional , Sefarose/química , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
8.
Mater Sci Eng C Mater Biol Appl ; 98: 1145-1158, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30812998

RESUMO

3D powder printing is a versatile method for the fabrication of individual bone implants and was used for the processing of in vivo degradable ceramic scaffolds based on ammonium magnesium phosphate hexahydrate (struvite). In this study, synergetic effects could be achieved by the substitution of magnesium phosphate cements with strontium carbonate. This substitution resulted in 8.2 wt%, 16.4 wt%, and 24.6 wt% Sr2+ doped scaffolds, with a 1.9-3.1 times increased radiopacity compared to pure struvite. The maximal compressive strength of (16.1 ±â€¯1.1) MPa found for strontium substituted magnesium phosphate was in the range of cancelleous bone, which makes these 3D printed structures suitable for medical application in low-load-bearing bone areas. In an ion release study over a course of 18 days, the release of strontium, magnesium, calcium, and phosphate ions from scaffolds was analyzed by means of inductively coupled plasma mass spectrometry. Independent of the scaffold composition the Mg2+ concentrations (83-499 mg/l) continuously increased in the cell media. The Sr2+ release varied between 4.3 µg/day and 15.1 µg/day per g scaffold, corresponding to a Sr2+ concentration in media between 1.14 mg/l and 7.24 mg/l. Moreover, decreasing calcium and phosphate concentrations indicated the precipitation of an amorphous calcium phosphate phase. The superior osteogenic properties of strontium substituted magnesium phosphate, e.g. the increase of osteoblast activity and cell number and the simultaneous suppression of osteoclast differentiation could be verified in vitro by means of WST-assay, TRAP-staining, and SEM imaging.


Assuntos
Carbonatos/química , Carbonatos/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Osteogênese/efeitos dos fármacos , Fosfatos/química , Fosfatos/farmacologia , Pós/química , Estrôncio/química , Estrôncio/farmacologia , Materiais Biocompatíveis/química , Osso e Ossos/efeitos dos fármacos , Cálcio/química , Fosfatos de Cálcio/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cerâmica/química , Força Compressiva/efeitos dos fármacos , Humanos , Osteoblastos/efeitos dos fármacos , Impressão Tridimensional
9.
ACS Biomater Sci Eng ; 5(12): 6655-6666, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423484

RESUMO

Melt electrowriting (MEW) is an additive manufacturing technology that produces readily handleable fibrous scaffolds with controlled geometry to support cell infiltration. Although MEW scaffolds have excellent potential for cell delivery in regenerative medicine applications, studies to date have primarily focused on polymers such as poly(ε-caprolactone) (PCL) that lack bioactive cues to affect cell function. To address this aspect, MEW scaffolds with extracellular matrix (ECM) coatings were developed as a proadipogenic platform for human mesenchymal stromal cells (hMSCs). More specifically, highly flexible PCL scaffolds fabricated through MEW were coated with a complex ECM suspension prepared from human decellularized adipose tissue (DAT), purified fibronectin, or laminin to determine the effects of two key bioactive proteins present within adipose-derived ECM. In vitro studies exploring the response of human bone marrow-derived mesenchymal stromal cells cultured under adipogenic differentiation conditions indicated a high level of differentiation on all substrates studied, including unmodified PCL scaffolds and two-dimensional controls. To more fully assess the intrinsic proadipogenic capacity of the composite biomaterials, a modified culture regime was established that involved a short-term adipogenic induction in differentiation medium, followed by continued culture in maintenance medium supplemented with insulin for up to 3 weeks. Under these conditions, adipogenic differentiation was enhanced on all fiber scaffolds as compared to the tissue culture controls. Notably, the highest adipogenic response was consistently observed on the PCL + DAT scaffolds, based on the analysis of multiple markers including adipogenic gene [lipoprotein lipase, fatty acid binding protein 4 (FABP4), adiponectin, perilipin 1] and protein (FABP4, leptin) expression and intracellular triglyceride accumulation. Taken together, the PCL scaffolds incorporating DAT provide an adipoinductive microenvironment for the hMSCs, with particular applicability of this cell-instructive delivery platform for applications in plastic and reconstructive surgery.

10.
Small ; 14(22): e1800232, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29707891

RESUMO

The electrohydrodynamic stabilization of direct-written fluid jets is explored to design and manufacture tissue engineering scaffolds based on their desired fiber dimensions. It is demonstrated that melt electrowriting can fabricate a full spectrum of various fibers with discrete diameters (2-50 µm) using a single nozzle. This change in fiber diameter is digitally controlled by combining the mass flow rate to the nozzle with collector speed variations without changing the applied voltage. The greatest spectrum of fiber diameters was achieved by the simultaneous alteration of those parameters during printing. The highest placement accuracy could be achieved when maintaining the collector speed slightly above the critical translation speed. This permits the fabrication of medical-grade poly(ε-caprolactone) into complex multimodal and multiphasic scaffolds, using a single nozzle in a single print. This ability to control fiber diameter during printing opens new design opportunities for accurate scaffold fabrication for biomedical applications.


Assuntos
Eletroquímica/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Tecido Adiposo/citologia , Humanos , Pressão , Células-Tronco/citologia
11.
Acta Biomater ; 72: 110-120, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29555458

RESUMO

Ligaments and tendons are comprised of aligned, crimped collagen fibrils that provide tissue-specific mechanical properties with non-linear extension behaviour, exhibiting low stress at initial strain (toe region behaviour). To approximate this behaviour, we report fibrous scaffolds with sinusoidal patterns by melt electrowriting (MEW) below the critical translation speed (CTS) by exploitation of the natural flow behaviour of the polymer melt. More specifically, we synthesised photopolymerizable poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) (p(LLA-co-ε-CL-co-AC)) and poly(ε-caprolactone-co-acryloyl carbonate) (p(ε-CL-co-AC)) by ring-opening polymerization (ROP). Single fibre (fØ = 26.8 ±â€¯1.9 µm) tensile testing revealed a customisable toe region with Young's Moduli ranging from E = 29 ±â€¯17 MPa for the most crimped structures to E = 314 ±â€¯157 MPa for straight fibres. This toe region extended to scaffolds containing multiple fibres, while the sinusoidal pattern could be influenced by printing speed. The synthesized polymers were cytocompatible and exhibited a tensile strength of σ = 26 ±â€¯7 MPa after 104 cycles of preloading at 10% strain while retaining the distinct toe region commonly observed in native ligaments and tendon tissue. STATEMENT OF SIGNIFICANCE: Damaged tendons and ligaments are serious and frequently occurring injuries worldwide. Recent therapies, including autologous grafts, still have severe disadvantages leading to a demand for synthetic alternatives. Materials envisioned to induce tendon and ligament regeneration should be degradable, cytocompatible and mimic the ultrastructural and mechanical properties of the native tissue. Specifically, we utilised photo-cross-linkable polymers for additive manufacturing (AM) with MEW. In this way, we were able to direct-write cytocompatible fibres of a few micrometres thickness into crimp-structured elastomer scaffolds that mimic the non-linear biomechanical behaviour of tendon and ligament tissue.


Assuntos
Materiais Biomiméticos , Elastômeros , Fibroblastos/metabolismo , Ligamentos , Tendões , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Linhagem Celular , Elastômeros/síntese química , Elastômeros/química , Fibroblastos/citologia , Teste de Materiais , Camundongos , Processos Fotoquímicos , Resistência à Tração
12.
Sci Rep ; 7(1): 558, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28373697

RESUMO

Dicalcium phosphate cement preparation requires the addition of setting retarders to meet clinical requirements regarding handling time and processability. Previous studies have focused on the influence of different setting modifiers on material properties such as mechanical performance or injectability, while ignoring their influence on biological cement properties as they are used in low concentrations in the cement pastes and the occurrence of most compounds in human tissues. Here, analyses of both material and biological behavior were carried out on samples with common setting retardants (citric acid, sodium pyrophosphate, sulfuric acid) and novel (phytic acid). Cytocompatibility was evaluated by in vitro tests with osteoblastic (hFOB 1.19) and osteoclastic (RAW 264.7) cells. We found cytocompatibility was better for sodium pyrophosphate and phytic acid with a three-fold cell metabolic activity by WST-1 test, whereas samples set with citric acid showed reduced cell number as well as cell activity. The compressive strength (CS) of cements formed with phytic acid (CS = 13 MPa) were nearly equal to those formed with citric acid (CS = 15 MPa) and approximately threefold higher than for other setting retardants. Due to a proven cytocompatibility and high mechanical strength, phytic acid seems to be a candidate replacement setting retardant for dicalcium phosphate cements.


Assuntos
Fosfatos de Cálcio , Ácido Fítico , Animais , Materiais Biocompatíveis/química , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Cimentos Dentários/química , Teste de Materiais , Fenômenos Mecânicos , Camundongos , Osteoblastos , Osteoclastos , Ácido Fítico/química , Células RAW 264.7 , Temperatura , Difração de Raios X
13.
Mater Sci Eng C Mater Biol Appl ; 73: 111-119, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183587

RESUMO

Bioceramic degradation can occur by both passive dissolution and following active osteoclastic bone remodeling. Key parameters controlling ceramic degradation are the pH-dependent solubility product of the ceramic phase, which alters ion concentrations in physiological solution and hence regulates cell activity. This study investigated the in vitro degradation profiles of various calcium magnesium phosphate ceramics formed at low temperature. The passive resorption was measured by incubating the cement samples in cell culture medium, while active resorption was determined during a surface culture of multinuclear osteoclastic cells derived from RAW 264.7 macrophages. All surfaces showed mostly similar TRAP activities after adding RANKL-factor to stimulate osteoclastogenesis. The active degradation of the materials by osteoclasts was found to be the predominant factor for ceramic dissolution as determined by measuring the ion concentrations of cell culture medium. Here, large sized osteoclasts formed predominantly on ceramics with a Mg:Ca ratio ≥2.0 seemed to be less effective compared to smaller macrophages.


Assuntos
Cimentos Ósseos/farmacologia , Reabsorção Óssea/patologia , Cálcio/análise , Magnésio/análise , Osteoclastos/patologia , Estruvita/farmacologia , Actinas/metabolismo , Animais , Contagem de Células , Morte Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Forma Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Força Compressiva , Durapatita/farmacologia , Imunofluorescência , Íons , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/ultraestrutura , Porosidade , Células RAW 264.7 , Espectrofotometria Atômica , Coloração e Rotulagem , Fosfatase Ácida Resistente a Tartarato/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...