Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 480, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102537

RESUMO

BACKGROUND: Spatial mapping of transcriptional states provides valuable biological insights into cellular functions and interactions in the context of the tissue. Accurate 3D cell segmentation is a critical step in the analysis of this data towards understanding diseases and normal development in situ. Current approaches designed to automate 3D segmentation include stitching masks along one dimension, training a 3D neural network architecture from scratch, and reconstructing a 3D volume from 2D segmentations on all dimensions. However, the applicability of existing methods is hampered by inaccurate segmentations along the non-stitching dimensions, the lack of high-quality diverse 3D training data, and inhomogeneity of image resolution along orthogonal directions due to acquisition constraints; as a result, they have not been widely used in practice. METHODS: To address these challenges, we formulate the problem of finding cell correspondence across layers with a novel optimal transport (OT) approach. We propose CellStitch, a flexible pipeline that segments cells from 3D images without requiring large amounts of 3D training data. We further extend our method to interpolate internal slices from highly anisotropic cell images to recover isotropic cell morphology. RESULTS: We evaluated the performance of CellStitch through eight 3D plant microscopic datasets with diverse anisotropic levels and cell shapes. CellStitch substantially outperforms the state-of-the art methods on anisotropic images, and achieves comparable segmentation quality against competing methods in isotropic setting. We benchmarked and reported 3D segmentation results of all the methods with instance-level precision, recall and average precision (AP) metrics. CONCLUSIONS: The proposed OT-based 3D segmentation pipeline outperformed the existing state-of-the-art methods on different datasets with nonzero anisotropy, providing high fidelity recovery of 3D cell morphology from microscopic images.


Assuntos
Imageamento Tridimensional , Redes Neurais de Computação , Anisotropia , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos
3.
Patterns (N Y) ; 1(3): 100035, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33205104

RESUMO

Single-cell technologies provide the opportunity to identify new cellular states. However, a major obstacle to the identification of biological signals is noise in single-cell data. In addition, single-cell data are very sparse. We propose a new method based on random matrix theory to analyze and denoise single-cell sequencing data. The method uses the universal distributions predicted by random matrix theory for the eigenvalues and eigenvectors of random covariance/Wishart matrices to distinguish noise from signal. In addition, we explain how sparsity can cause spurious eigenvector localization, falsely identifying meaningful directions in the data. We show that roughly 95% of the information in single-cell data is compatible with the predictions of random matrix theory, about 3% is spurious signal induced by sparsity, and only the last 2% reflects true biological signal. We demonstrate the effectiveness of our approach by comparing with alternative techniques in a variety of examples with marked cell populations.

4.
Science ; 366(6465): 594-599, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672890

RESUMO

We used 20 de novo genome assemblies to probe the speciation history and architecture of gene flow in rapidly radiating Heliconius butterflies. Our tests to distinguish incomplete lineage sorting from introgression indicate that gene flow has obscured several ancient phylogenetic relationships in this group over large swathes of the genome. Introgressed loci are underrepresented in low-recombination and gene-rich regions, consistent with the purging of foreign alleles more tightly linked to incompatibility loci. Here, we identify a hitherto unknown inversion that traps a color pattern switch locus. We infer that this inversion was transferred between lineages by introgression and is convergent with a similar rearrangement in another part of the genus. These multiple de novo genome sequences enable improved understanding of the importance of introgression and selective processes in adaptive radiation.


Assuntos
Borboletas/genética , Fluxo Gênico , Introgressão Genética , Genoma de Inseto , Animais , Evolução Biológica , Borboletas/anatomia & histologia , Inversão Cromossômica , Genes de Insetos , Especiação Genética , Filogenia , Asas de Animais/anatomia & histologia
5.
Genetics ; 211(4): 1191-1204, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30787042

RESUMO

Accurate estimation of recombination rates is critical for studying the origins and maintenance of genetic diversity. Because the inference of recombination rates under a full evolutionary model is computationally expensive, we developed an alternative approach using topological data analysis (TDA) on genome sequences. We find that this method can analyze datasets larger than what can be handled by any existing recombination inference software, and has accuracy comparable to commonly used model-based methods with significantly less processing time. Previous TDA methods used information contained solely in the first Betti number ([Formula: see text]) of a set of genomes, which aims to capture the number of loops that can be detected within a genealogy. These explorations have proven difficult to connect to the theory of the underlying biological process of recombination, and, consequently, have unpredictable behavior under perturbations of the data. We introduce a new topological feature, which we call ψ, with a natural connection to coalescent models, and present novel arguments relating [Formula: see text] to population genetic models. Using simulations, we show that ψ and [Formula: see text] are differentially affected by missing data, and package our approach as TREE (Topological Recombination Estimator). TREE's efficiency and accuracy make it well suited as a first-pass estimator of recombination rate heterogeneity or hotspots throughout the genome. Our work empirically and theoretically justifies the use of topological statistics as summaries of genome sequences and describes a new, unintuitive relationship between topological features of the distribution of sequence data and the footprint of recombination on genomes.


Assuntos
Algoritmos , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Recombinação Genética , Animais , Arabidopsis/genética , Confiabilidade dos Dados , Drosophila/genética
6.
Nat Genet ; 48(7): 768-76, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27270107

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. To better understand how GBM evolves, we analyzed longitudinal genomic and transcriptomic data from 114 patients. The analysis shows a highly branched evolutionary pattern in which 63% of patients experience expression-based subtype changes. The branching pattern, together with estimates of evolutionary rate, suggests that relapse-associated clones typically existed years before diagnosis. Fifteen percent of tumors present hypermutation at relapse in highly expressed genes, with a clear mutational signature. We find that 11% of recurrence tumors harbor mutations in LTBP4, which encodes a protein binding to TGF-ß. Silencing LTBP4 in GBM cells leads to suppression of TGF-ß activity and decreased cell proliferation. In recurrent GBM with wild-type IDH1, high LTBP4 expression is associated with worse prognosis, highlighting the TGF-ß pathway as a potential therapeutic target in GBM.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Evolução Clonal/genética , Dacarbazina/análogos & derivados , Glioblastoma/patologia , Mutação/genética , Recidiva Local de Neoplasia/patologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Proliferação de Células , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Genômica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Isocitrato Desidrogenase/genética , Proteínas de Ligação a TGF-beta Latente/genética , Estudos Longitudinais , Gradação de Tumores , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Taxa de Sobrevida , Temozolomida , Transcriptoma , Fator de Crescimento Transformador beta/genética , Proteínas Supressoras de Tumor/genética
7.
Cell Rep ; 9(4): 1228-34, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25456125

RESUMO

Somatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs) arising in an XPC(-/-) background. XPC(-/-) cells lack global genome nucleotide excision repair (GG-NER), thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk.


Assuntos
Carcinoma de Células Escamosas/genética , Reparo do DNA/genética , Genoma Humano/genética , Heterocromatina/genética , Taxa de Mutação , Neoplasias Cutâneas/genética , Transcrição Gênica , Empacotamento do DNA/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Células Germinativas/metabolismo , Humanos , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...