Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
3D Print Addit Manuf ; 11(1): 323-332, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38389675

RESUMO

Modern 3D printing is a valuable tool for tissue engineering (TE), and the fabrication of complex geometries such as tubular scaffolds with adaptable structure, for example, as replacements for intestines, bronchi, esophagus, or vessels, could contribute to standardized procedures in the future of regenerative medicine. However, high-precision bioprinting of scaffolds for tubular TE applications remain a major challenge and is an arduous endeavor with currently available three-axis bioprinters, which are limited to planar, layer-by-layer printing processes. In this work, a novel, straightforward workflow for creating toolpaths and command sets for tubular scaffolds is presented. By combining a custom software application with commercial 3D design software, a comparatively large degree of design freedom was achieved while ensuring ease of use and extensibility for future research needs. As a hardware platform, two commercial 3D bioprinters were retrofitted with a rotary axis to accommodate cylindrical mandrels as print beds, overcoming the limitations of planar print beds. The printing process using the new method was evaluated in terms of the mechanical, actuation, and synchronization characteristics of the linear and rotating axes, as well as the stability of the printing process. In this context, it became clear that extrusion-based printing processes are very sensitive to positioning errors when used with small nozzles. Despite these technical difficulties, the new process can produce single-layer, multilayer, and multimaterial structures with a wide range of pore geometries. In addition, extrusion-based printing processes can be combined with melt electrowriting to produce durable scaffolds with features in the micrometer to millimeter range. Overall, the suitability of this setup for a wide range of TE applications has thus been demonstrated.

2.
Tissue Barriers ; : 2300580, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38179897

RESUMO

Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defense of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection. While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies.

3.
Eng Life Sci ; 23(2): 2200026, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751470

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a public crisis. Many medical and public institutions and businesses went into isolation in response to the pandemic. Because SARS-CoV-2 can spread irrespective of a patient's course of disease, these institutions' continued operation or reopening based on the assessment and control of virus spread can be supported by targeted population screening. For this purpose, virus testing in the form of polymerase chain reaction (PCR) analysis and antibody detection in blood can be central. Mobile SARS-CoV-2 screening facilities with a built-in biosafety level (BSL)-2 laboratory were set up to allow the testing offer to be brought close to the subject group's workplace. University staff members, their expertise, and already available equipment were used to implement and operate the screening facilities and a certified diagnostic laboratory. This operation also included specimen collection, transport, PCR and antibody analysis, and informing subjects as well as public health departments. Screening facilities were established at different locations such as educational institutions, nursing homes, and companies providing critical supply chains for health care. Less than 4 weeks after the first imposed lockdown in Germany, a first mobile testing station was established featuring a build-in laboratory with two similar stations commencing operation until June 2020. During the 15-month project period, approximately 33,000 PCR tests and close to 7000 antibody detection tests were collected and analyzed. The presented approach describes the required procedures that enabled the screening facilities and laboratories to collect and process several hundred specimens each day under difficult conditions. This report can assist others in establishing similar setups for pandemic scenarios.

4.
BMC Public Health ; 23(1): 240, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737718

RESUMO

BACKGROUND: Since social distancing during the COVID-19-pandemic had a profound impact on professional life, this study investigated the effect of PCR testing on on-site work. METHODS: PCR screening, antibody testing, and questionnaires offered to 4,890 working adults in Lower Saxony were accompanied by data collection on demographics, family status, comorbidities, social situation, health-related behavior, and the number of work-related contacts. Relative risks (RR) with 95 % confidence intervals were estimated for the associations between regular PCR testing and other work and health-related variables, respectively, and working on-site. Analyses were stratified by the suitability of work tasks for mobile office. RESULTS: Between April 2020 and February 2021, 1,643 employees underwent PCR testing. Whether mobile working was possible strongly influenced the work behavior. Persons whose work was suitable for mobile office (mobile workers) had a lower probability of working on-site than persons whose work was not suitable for mobile office (RR = 0.09 (95 % CI: 0.07 - 0.12)). In mobile workers, regular PCR-testing was slightly associated with working on-site (RR = 1.19 (0.66; 2.14)). In those whose working place was unsuitable for mobile office, the corresponding RR was 0.94 (0.80; 1.09). Compared to persons without chronic diseases, chronically ill persons worked less often on-site if their workplace was suitable for mobile office (RR = 0.73 (0.40; 1.33)), but even more often if their workplace was not suitable for mobile office (RR = 1.17 (1.04; 1.33)). CONCLUSION: If work was suitable for mobile office, regular PCR-testing did not have a strong effect on presence at the work site. TRIAL REGISTRATION: An ethics vote of the responsible medical association (Lower Saxony, Germany) retrospectively approved the evaluation of the collected subject data in a pseudonymized form in the context of medical studies (No. Bo/30/2020; Bo/31/2020; Bo/32/2020).


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/epidemiologia , Pandemias , Estudos Retrospectivos , Local de Trabalho , Reação em Cadeia da Polimerase , Teste para COVID-19
5.
Front Immunol ; 13: 973673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479132

RESUMO

Asthmatics are more susceptible to viral infections than healthy individuals and are known to have impaired innate anti-viral defences. Influenza A virus causes significant morbidity and mortality in this population. Immuno-modulatory regulators (IMRs) such as PD-1 are activated on T cells following viral infection as part of normal T cell activation responses, and then subside, but remain elevated in cases of chronic exposure to virus, indicative of T cell exhaustion rather than activation. There is evidence that checkpoint inhibition can enhance anti-viral responses during acute exposure to virus through enhancement of CD8+T cell function. Although elevated PD-1 expression has been described in pulmonary tissues in other chronic lung diseases, the role of IMRs in asthma has been relatively unexplored as the basis for immune dysfunction. We first assessed IMR expression in the peripheral circulation and then quantified changes in IMR expression in lung tissue in response to ex-vivo influenza infection. We found that the PD-1 family members are not significantly altered in the peripheral circulation in individuals with severe asthma but are elevated in pulmonary tissues following ex-vivo influenza infection. We then applied PD-1 Mab inhibitor treatment to bronchial biopsy tissues infected with influenza virus and found that PD-1 inhibition was ineffective in asthmatics, but actually increased infection rates in healthy controls. This study, therefore, suggests that PD-1 therapy would not produce harmful side-effects when applied in people with severe asthma, but could have important, as yet undescribed, negative effects on anti-viral responses in healthy individuals that warrant further investigation.


Assuntos
Asma , Influenza Humana , Receptor de Morte Celular Programada 1 , Humanos , Influenza Humana/complicações , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Asma/metabolismo , Asma/virologia , Progressão da Doença , Linfócitos T CD8-Positivos
6.
Viruses ; 14(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366528

RESUMO

Mast cells (MCs) are classically associated with allergic asthma but their role in antiviral immunity is unclear. Human rhinoviruses (HRVs) are a major cause of asthma exacerbations and can infect and replicate within MCs. The primary site of HRV infection is the airway epithelium and MCs localise to this site with increasing asthma severity. The asthma susceptibility gene, IL-33, encodes an epithelial-derived cytokine released following HRV infection but its impact on MC antiviral responses has yet to be determined. In this study we investigated the global response of LAD2 MCs to IL-33 stimulation using RNA sequencing and identified genes involved in antiviral immunity. In spite of this, IL-33 treatment increased permissiveness of MCs to HRV16 infection which, from the RNA-Seq data, we attributed to upregulation of ICAM1. Flow cytometric analysis confirmed an IL-33-dependent increase in ICAM1 surface expression as well as LDLR, the receptors used by major and minor group HRVs for cellular entry. Neutralisation of ICAM1 reduced the IL-33-dependent enhancement in HRV16 replication and release in both LAD2 MCs and cord blood derived MCs. These findings demonstrate that although IL-33 induces an antiviral signature in MCs, it also upregulates the receptors for HRV entry to enhance infection. This highlights the potential for a gene-environment interaction involving IL33 and HRV in MCs to contribute to virus-induced asthma exacerbations.


Assuntos
Asma , Infecções por Picornaviridae , Humanos , Rhinovirus/fisiologia , Interleucina-33/farmacologia , Mastócitos/metabolismo , Antivirais/farmacologia , Permissividade , Replicação Viral , Células Epiteliais
7.
J Clin Virol ; 157: 105322, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36279696

RESUMO

BACKGROUND: Detection of seroconversion after SARS-CoV-2-infection or vaccination is relevant to discover subclinical cases and recognize patients with a possible immunity. OBJECTIVES: Test performance, effects of age, time-point of seroconversion and immune status regarding neutralizing antibodies (NAbs) and T-cell-reactivity were investigated. STUDY DESIGN: Two antibody assays (Viramed-Test for S/N-specific IgG, Roche-Test for N-specific IgA, -M, -G) were evaluated with classified samples. In total, 381 subjects aged 6-99 years, who had either recovered from the disease or had been vaccinated, were screened for SARS-CoV-2-specific antibodies. This screening was part of an open observational study with working adults. Additionally, children and adults were analyzed in a longitudinal COVID-19 study in schools. For immunity evaluation, virus neutralization tests and ELISpot tests were performed in a subgroup of subjects. RESULTS: Viramed revealed a slightly lower test performance than Roche, but test quality was equally well in samples from very young or very old donors. The time-point of seroconversion after the respective immunization detected by the two tests was not significantly different. N-specific antibodies, detected with Roche, highly correlated with NAbs in recovered subjects, whereas a positive Viramed-Test result was paralleled by a positive ELISpot result. CONCLUSION: Viramed-Test was not as sensitive as Roche-Test, but highly specific and beneficial to distinguish between recovered and vaccinated status. For both tests correlations with humoral and cellular immunity were found. Of note, the expected early detection of IgA and IgM by the Roche-Test did not prove to be an advantage over IgG testing by Viramed.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Humanos , COVID-19/diagnóstico , Sensibilidade e Especificidade , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunoglobulina G , Imunoglobulina A
8.
J Funct Biomater ; 13(4)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36278629

RESUMO

Chronic tendon ruptures are common disorders in orthopedics. The conventional surgical methods used to treat them often require the support of implants. Due to the non-availability of suitable materials, 3D-printed polycaprolactone (PCL) scaffolds were designed from two different starting materials as suitable candidates for tendon-implant applications. For the characterization, mechanical testing was performed. To increase their biocompatibility, the PCL-scaffolds were plasma-treated and coated with fibronectin and collagen I. Cytocompatibility testing was performed using L929 mouse fibroblasts and human-bone-marrow-derived mesenchymal stem cells. The mechanical testing showed that the design adaptions enhanced the mechanical stability. Cell attachment was increased in the plasma-treated specimens compared to the control specimens, although not significantly, in the viability tests. Coating with fibronectin significantly increased the cellular viability compared to the untreated controls. Collagen I treatment showed an increasing trend. The desired cell alignment and spread between the pores of the construct was most prominent on the collagen-I-coated specimens. In conclusion, 3D-printed scaffolds are possible candidates for the development of tendon implants. Enhanced cytocompatibility was achieved through surface modifications. Although adaptions in mechanical strength still require alterations in order to be applied to human-tendon ruptures, we are optimistic that a suitable implant can be designed.

9.
Front Bioeng Biotechnol ; 10: 896719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061443

RESUMO

Melt electro writing (MEW) is a high-resolution 3D printing technique that combines elements of electro-hydrodynamic fiber attraction and melts extrusion. The ability to precisely deposit micro- to nanometer strands of biocompatible polymers in a layer-by-layer fashion makes MEW a promising scaffold fabrication method for all kinds of tissue engineering applications. This review describes possibilities to optimize multi-parametric MEW processes for precise fiber deposition over multiple layers and prevent printing defects. Printing protocols for nonlinear scaffolds structures, concrete MEW scaffold pore geometries and printable biocompatible materials for MEW are introduced. The review discusses approaches to combining MEW with other fabrication techniques with the purpose to generate advanced scaffolds structures. The outlined MEW printer modifications enable customizable collector shapes or sacrificial materials for non-planar fiber deposition and nozzle adjustments allow redesigned fiber properties for specific applications. Altogether, MEW opens a new chapter of scaffold design by 3D printing.

10.
Dtsch Med Wochenschr ; 147(17): e70-e81, 2022 09.
Artigo em Alemão | MEDLINE | ID: mdl-35926520

RESUMO

INTRODUCTION: Chronic kidney failure (CKD) is as common as diabetes or coronary heart disease in a population aged 40 years and older. Although CKD increases the risk of secondary diseases or premature death, patients with CKD are often unaware of their disease. In a recent analysis of German data, unawareness CKD was higher in women than in men. METHODS: Baseline data from 2010 of 3,305 CKD patients from German cohort studies and registries were analyzed. Stage 1-4 CKD was defined by eGFR (estimated glomerular filtration rate) and albumin-creatinine ratio according to the KDIGO-guideline. Patient knowledge of CKD was coded according to self-report. The proportion of patients without knowledge of CKD and the sex-specific proportion difference (each with 95 % confidence interval) were calculated according to CKD stages and additional comorbidities (diabetes, hypertension, anemia, and cardiovascular disease). In addition, the prevalence ratio (PR) for not knowing about CKD was estimated for women compared to men crude and adjusted for age and other risk factors. RESULTS: Women were less likely than men to know about their CKD in all subgroups studied by age, CKD stage, and comorbidities. The proportion difference for CKD awareness increased with higher CKD stage and was 21 percentage points (7.6; 34.6) at the expense of women in CKD stage 4. Among patients with CKD stage 3b and concomitant grade 2 hypertension, 61 % of women versus 45 % of men were unaware of their disease. The PR for CKD unawareness in women compared with men in the fully adjusted model increased from 1.08 (1.00; 1.16) in CKD stage 3a to 1.75 (1.14; 2.68) in CKD stage 4. CONCLUSION: Despite the presence risk factors that necessitate monitoring of renal function, less than half of patients know they have CKD stage 3b or 4. Women are less likely to be aware of their CKD in all subgroups. Possible causes are gender-related differences in primary health care (gender bias) or in patient-doctor communication.


Assuntos
Diabetes Mellitus , Hipertensão , Insuficiência Renal Crônica , Adulto , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Sexismo
11.
Eur Respir J ; 60(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35777774

RESUMO

Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.


Assuntos
Pulmão , Doenças Respiratórias , Humanos , Animais , Camundongos , Pulmão/fisiologia , Engenharia Tecidual/métodos
12.
Microvasc Res ; 143: 104402, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753506

RESUMO

In regenerative medicine, autologous peripheral blood derived endothelial colony forming cells (PB-derived ECFC) represent a promising source of endothelial cells (EC) for pre-endothelialization of arterial tissue engineered vascular grafts (TEVG) since they are readily attainable, can easily be isolated and possess a high proliferation potential. The aim of this study was to compare the phenotype of PB-derived ECFC with arterial and venous model cells such as human aortic endothelial cells (HAEC) and human umbilical vein endothelial cells (HUVEC) under dynamic cell culture conditions to find a suitable cell source of EC for pre-endothelialization. In this study PB-derived ECFC were cultivated over 24 h under a high pulsatile shear stress (20 dyn/cm2, 1 Hz) and subsequently analyzed. ECFC oriented and elongated in the direction of flow and expressed similar anti-thrombotic and endothelial differentiation markers compared to HAEC. There were significant differences observable in gene expression levels of CD31, CD34 and NOTCH4 between ECFC and HUVEC. These results therefore suggest an arterial phenotype for PB-derived ECFC both under static and flow conditions, and this was supported by NOTCH4 protein expression profiles. ECFC also significantly up-regulated gene expression levels of anti-thrombotic genes such as krueppel-like factor 2, endothelial nitric oxide synthase 3 and thrombomodulin under shear stress cultivation as compared to static conditions. Dynamically cultured PB-derived ECFC therefore may be a promising cell source for pre-endothelialization of arterial TEVGs.


Assuntos
Artérias , Prótese Vascular , Técnicas de Cultura de Células , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos
13.
Eng Life Sci ; 22(3-4): 344-360, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35382534

RESUMO

Conventional synthetic vascular grafts require ongoing anticoagulation, and autologous venous grafts are often not available in elderly patients. This review highlights the development of bioartificial vessels replacing brain-dead donor- or animal-deriving vessels with ongoing immune reactivity. The vision for such bio-hybrids exists in a combination of biodegradable scaffolds and seeding with immune-neutral cells, and here different cells sources such as autologous progenitor cells or stem cells are relevant. This kind of in situ tissue engineering depends on a suitable bioreactor system with elaborate monitoring systems, three-dimensional (3D) visualization and a potential of cell conditioning into the direction of the targeted vascular cell phenotype. Necessary bioreactor tools for dynamic and pulsatile cultivation are described. In addition, a concept for design of vasa vasorum is outlined, that is needed for sustainable nutrition of the wall structure in large caliber vessels. For scaffold design and cell adhesion additives, different materials and technologies are discussed. 3D printing is introduced as a relatively new field with promising prospects, for example, to create complex geometries or micro-structured surfaces for optimal cell adhesion and ingrowth in a standardized and custom designed procedure. Summarizing, a bio-hybrid vascular prosthesis from a controlled biotechnological process is thus coming more and more into view. It has the potential to withstand strict approval requirements applied for advanced therapy medicinal products.

14.
Lab Chip ; 22(10): 2041-2054, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35485428

RESUMO

A multichannel microfluidic platform for real-time monitoring of epithelial barrier integrity by electrical impedance has been developed. Growth and polarization of human epithelial cells from the airway or gastrointestinal tract was continuously monitored over 5 days in 8 parallel, individually perfused microfluidic chips. Electrical impedance data were continuously recorded to monitor cell barrier formation using a low-cost bespoke impedance analyser. Data was analysed using an electric circuit model to extract the equivalent transepithelial electrical resistance and epithelial cell layer capacitance. The cell barrier integrity steadily increased overtime, achieving an average resistance of 418 ± 121 Ω cm2 (airway cells) or 207 ± 59 Ω cm2 (gastrointestinal cells) by day 5. The utility of the polarized airway epithelial barrier was demonstrated using a 24 hour challenge with double stranded RNA to mimic viral infection. This caused a rapid decrease in barrier integrity in association with disruption of tight junctions, whereas simultaneous treatment with a corticosteroid reduced this effect. The platform is able to measure barrier integrity in real-time and is scalable, thus has the potential to be used for drug development and testing.


Assuntos
Espectroscopia Dielétrica , Microfluídica , Impedância Elétrica , Células Epiteliais , Humanos , Junções Íntimas
15.
Microbiol Spectr ; 10(1): e0151221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171028

RESUMO

Despite lockdown measures, intense symptom-based PCR, and antigen testing, the SARS-CoV-2 pandemic spread further. In this open observational study conducted in Lower Saxony, Germany, voluntary SARS-CoV-2 PCR tests were performed from April 2020 until June 2021, supported by serum antibody testing to prove whether PCR testing in subjects with none or few symptoms of COVID-19 is a suitable tool to manage the pandemic. In different mobile stations, 4,817 subjects from three different working fields participated in the PCR testing. Serum antibody screening using the SARS-CoV-2 ViraChip IgG (Viramed, Germany) and the Elecsys Anti-SARS-CoV-2 assay (Roche, Germany) was performed alongside virus neutralization testing. Subjects were questioned regarding comorbidities and COVID-19 symptoms. Fifty-one subjects with acute SARS-CoV-2 infection were detected of which 31 subjects did not show any symptoms possibly characteristic for COVID-19. An additional 37 subjects reported a previous SARS-CoV-2 infection (total prevalence 1.82%). Seroconversion was discovered in 58 subjects with known SARS-CoV-2 infection and in 58 subjects that never had a positive PCR test. The latter had a significantly lower Charlson Comorbidity Index, and one third of them were asymptomatic. In 50% of all seroconverted subjects, neutralizing serum antibodies (NAbs) were detectable in parallel to N/S1 (n = 16) or N/S1/S2 antigen specific antibodies (n = 40) against SARS-CoV-2. NAb titers decreased within 100 days after PCR-confirmed SARS-CoV-2 acute infection by at least 2.5-fold. A relatively high rate of subclinical SARS-CoV-2 infections may contribute to the spread of SARS-CoV-2, suggesting that in addition to other intervention strategies, systematic screening of asymptomatic persons by PCR testing may significantly enable better pandemic control. IMPORTANCE Within this open observational study, repeated PCR (n > 4,700) and antibody screening (n > 1,600) tests were offered in three different working fields. The study identified 51 subjects with acute SARS-CoV-2 infection and 37 subjects reported to have had a positive PCR test taken externally. Thirty-one of the 51 subjects did not display any symptoms prior to testing. In addition, 58 subjects without PCR-confirmed SARS-CoV-2 infection were identified by seroconversion. Subjects, that had undergone SARS-CoV-2 infection without having noticed, more often had a low grade of immunization with no NAbs, but may have relevantly contributed to the spread of the pandemic. Based on these results, we suggest that both regular PCR and rapid test screening of symptomatic and asymptomatic individuals, specifically within groups or workplaces identifiable as having close quarter contact, thus increased infection transference risk, is necessary to better assess and therefore reduce the spread of a pandemic virus.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Assintomáticas , COVID-19/sangue , Teste Sorológico para COVID-19 , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Estudos Prospectivos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Soroconversão , Adulto Jovem
16.
Diagnostics (Basel) ; 12(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35204399

RESUMO

Chronic antibody-mediated rejection (AMR) is a key limiting factor for the clinical outcome of a kidney transplantation (Ktx), where early diagnosis and therapeutic intervention is needed. This study describes the identification of the biomarker CXC-motif chemokine ligand (CXCL) 9 as an indicator for AMR and presents a new aptamer-antibody-hybrid lateral flow assay (hybrid-LFA) for detection in urine. Biomarker evaluation included two independent cohorts of kidney transplant recipients (KTRs) from a protocol biopsy program and used subgroup comparisons according to BANFF-classifications. Plasma, urine and biopsy lysate samples were analyzed with a Luminex-based multiplex assay. The CXCL9-specific hybrid-LFA was developed based upon a specific rat antibody immobilized on a nitrocellulose-membrane and the coupling of a CXCL9-binding aptamer to gold nanoparticles. LFA performance was assessed according to receiver operating characteristic (ROC) analysis. Among 15 high-scored biomarkers according to a neural network analysis, significantly higher levels of CXCL9 were found in plasma and urine and biopsy lysates of KTRs with biopsy-proven AMR. The newly developed hybrid-LFA reached a sensitivity and specificity of 71% and an AUC of 0.79 for CXCL9. This point-of-care-test (POCT) improves early diagnosis-making in AMR after Ktx, especially in KTRs with undetermined status of donor-specific HLA-antibodies.

17.
J Adolesc Health ; 70(3): 378-386, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34972613

RESUMO

PURPOSE: The COVID-19 pandemic affects students in a myriad of different ways. Our prospective, longitudinal study in a cohort of students in Hannover, Germany explores behavioral patterns during escalating COVID-19 restrictions. METHODS: In total, 777 students between the age of 9 and 20 were assessed for their activity engagement, travel patterns, and self-assessed compliance with protective recommendations at six time points between June 2020 and June 2021 (3,564 observations) and were monitored for severe acute respiratory syndrome coronavirus 2 infection by nasal swab polymerase chain reaction and serum antibody titers. RESULTS: Activity engagement decreased, but self-assessed compliance with measures such as mask wearing and social distancing was stable during escalating restrictions. Although we found no sex difference during the summer break, when incidence was lowest, females engaged in a higher variety of activities than males for all other time points. Older students engaged in more activities and self-assigned themselves lower compliance values than younger ones. Greater involvement in different activities was seen in households which traveled more frequently. Infection rate in our cohort was low (0.03% acute infections, 1.94% positive seroprevalence). DISCUSSION: Our study supports the view that, overall, students show high compliance with COVID-19 recommendations and restrictions. The identification of subsets, such as female and older students, with higher risk behavioral patterns should be considered when implementing public information campaigns. In light of the low infection rate in our cohort, we conclude that in-person learning can occur safely if extensive protective measures are in place and the incidence in the general population remains moderate.


Assuntos
COVID-19 , Adolescente , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Pandemias , Estudos Prospectivos , SARS-CoV-2 , Estudos Soroepidemiológicos
18.
ACS Chem Biol ; 17(1): 129-137, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35018777

RESUMO

Renal rejection is a major incidence in patients after kidney transplantation and associated with allograft scarring and function loss, especially in antibody-mediated rejection. Regular clinical monitoring of kidney-transplanted patients is thus necessary, but measuring donor-specific antibodies is not always predictive, and graft biopsies are time-consuming and costly and may come up with a histological result unsuspicious for rejection. Therefore, a noninvasive diagnostic approach to estimate an increased probability of kidney graft rejection by measuring specific biomarkers is highly desired. The chemokine CXCL9 is described as an early indicator of rejection. In this work, we identified clickmers and an aptamer by split-combine click-SELEX (systematic evolution of ligands by exponential enrichment) that bind CXLC9 with high affinity. The aptamers recognize native CXCL9 and maintain binding properties under urine conditions. These features render the molecules as potential binding and detector probes for developing point-of-care devices, e.g., lateral flow assays, enabling the noninvasive monitoring of CXCL9 in renal allograft patients.


Assuntos
Quimiocina CXCL9/química , Química Click , Rejeição de Enxerto/metabolismo , Biomarcadores/metabolismo , Humanos , Ligantes , Ligação Proteica
19.
Nat Aging ; 2(10): 896-905, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-37118289

RESUMO

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is effective in preventing COVID-19 hospitalization and fatal outcome. However, several studies indicated that there is reduced vaccine effectiveness among older individuals, which is correlated with their general health status1,2. How and to what extent age-related immunological defects are responsible for the suboptimal vaccine responses observed in older individuals receiving SARS-CoV-2 messenger RNA vaccine, is unclear and not fully investigated1,3-5. In this observational study, we investigated adaptive immune responses in adults of various ages (22-99 years old) receiving 2 doses of the BNT162b2 mRNA vaccine. Vaccine-induced Spike-specific antibody, and T and memory B cell responses decreased with increasing age. These responses positively correlated with the percentages of peripheral naïve CD4+ and CD8+ T cells and negatively with CD8+ T cells expressing signs of immunosenescence. Older adults displayed a preferred T cell response to the S2 region of the Spike protein, which is relatively conserved and a target for cross-reactive T cells induced by human 'common cold' coronaviruses. Memory T cell responses to influenza virus were not affected by age-related changes, nor the SARS-CoV-2-specific response induced by infection. Collectively, we identified signs of immunosenescence correlating with the outcome of vaccination against a new viral antigen to which older adults are immunologically naïve. This knowledge is important for the management of COVID-19 infections in older adults.


Assuntos
COVID-19 , Imunossenescência , Humanos , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Vacina BNT162 , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Vacinação , RNA Mensageiro/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-34831506

RESUMO

Chronic kidney disease (CKD) is associated with an increased risk for cardiovascular events, hospitalizations, end stage renal disease and mortality. Main risk factors for CKD are diabetes, hypertension, and older age. Although CKD prevalence is about 10%, awareness for CKD is generally low in patients and physicians, hindering early diagnosis and treatment. We analyzed baseline data of 3305 participants with CKD Stages 1-4 from German cohorts and registries collected in 2010. Prevalence of CKD unawareness and prevalence ratios (PR) (each with 95%-confidence intervals) were estimated in categories of age, sex, CKD stages, BMI, hypertension, diabetes and other relevant comorbidities. We used a log-binomial regression model to estimate the PR for CKD unawareness for females compared to males adjusting for CKD stage and CKD risk factors. CKD unawareness was high, reaching 71% (68-73%) in CKD 3a, 49% (45-54%) in CKD 3b and still 30% (24-36%) in CKD4. Prevalence of hypertension, diabetes or cardiovascular comorbidities was not associated with lower CKD unawareness. Independent of CKD stage and other risk factors unawareness was higher in female patients (PR = 1.06 (1.01; 1.10)). Even in patients with CKD related comorbidities, CKD unawareness was high. Female sex was strongly associated with CKD unawareness. Guideline oriented treatment of patients at higher risk for CKD could increase CKD awareness. Patient-physician communication about CKD might be amendable.


Assuntos
Diabetes Mellitus , Hipertensão , Falência Renal Crônica , Insuficiência Renal Crônica , Idoso , Feminino , Alemanha/epidemiologia , Humanos , Hipertensão/epidemiologia , Masculino , Insuficiência Renal Crônica/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...