Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Haptics ; PP2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37022237

RESUMO

Humans can leverage physical interaction to teach robot arms. As the human kinesthetically guides the robot through demonstrations, the robot learns the desired task. While prior works focus on how the robot learns, it is equally important for the human teacher to understand what their robot is learning. Visual displays can communicate this information; however, we hypothesize that visual feedback alone misses out on the physical connection between the human and robot. In this paper we introduce a novel class of soft haptic displays that wrap around the robot arm, adding signals without affecting that interaction. We first design a pneumatic actuation array that remains flexible in mounting. We then develop single and multi-dimensional versions of this wrapped haptic display, and explore human perception of the rendered signals during psychophysic tests and robot learning. We ultimately find that people accurately distinguish single-dimensional feedback with a Weber fraction of 11.4%, and identify multi-dimensional feedback with 94.5% accuracy. When physically teaching robot arms, humans leverage the single- and multi-dimensional feedback to provide better demonstrations than with visual feedback: our wrapped haptic display decreases teaching time while increasing demonstration quality. This improvement depends on the location and distribution of the wrapped haptic display.

2.
Front Robot AI ; 7: 548266, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501315

RESUMO

In nature, tip-localized growth allows navigation in tightly confined environments and creation of structures. Recently, this form of movement has been artificially realized through pressure-driven eversion of flexible, thin-walled tubes. Here we review recent work on robots that "grow" via pressure-driven eversion, referred to as "everting vine robots," due to a movement pattern that is similar to that of natural vines. We break this work into four categories. First, we examine the design of everting vine robots, highlighting tradeoffs in material selection, actuation methods, and placement of sensors and tools. These tradeoffs have led to application-specific implementations. Second, we describe the state of and need for modeling everting vine robots. Quasi-static models of growth and retraction and kinematic and force-balance models of steering and environment interaction have been developed that use simplifying assumptions and limit the involved degrees of freedom. Third, we report on everting vine robot control and planning techniques that have been developed to move the robot tip to a target, using a variety of modalities to provide reference inputs to the robot. Fourth, we highlight the benefits and challenges of using this paradigm of movement for various applications. Everting vine robot applications to date include deploying and reconfiguring structures, navigating confined spaces, and applying forces on the environment. We conclude by identifying gaps in the state of the art and discussing opportunities for future research to advance everting vine robots and their usefulness in the field.

3.
J Rehabil Assist Technol Eng ; 6: 2055668319866311, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523451

RESUMO

INTRODUCTION: When developing control strategies for robotic rehabilitation, it is important that end-users who train with those strategies retain what they learn. Within the current state-of-the-art, however, it remains unclear what types of robotic controllers are best suited for promoting retention. In this work, we experimentally compare short-term retention in able-bodied end-users after training with two common types of robotic control strategies: fixed- and variable-gain controllers. METHODS: Our approach is based on recent motor learning research, where reward signals are employed to reinforce the learning process. We extend this approach to now include robotic controllers, so that participants are trained with a robotic control strategy and auditory reward-based reinforcement on tasks of different difficulty. We then explore retention after the robotic feedback is removed. RESULTS: Overall, our results indicate that fixed-gain control strategies better stabilize able-bodied users' motor adaptation than either a no controller baseline or variable-gain strategy. When breaking these results down by task difficulty, we find that assistive and resistive fixed-gain controllers lead to better short-term retention on less challenging tasks but have opposite effects on the learning and forgetting rates. CONCLUSIONS: This suggests that we can improve short-term retention after robotic training with consistent controllers that match the task difficulty.

4.
Sci Robot ; 2(8)2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33157883

RESUMO

Across kingdoms and length scales, certain cells and organisms navigate their environments not through locomotion but through growth. This pattern of movement is found in fungal hyphae, developing neurons, and trailing plants, and is characterized by extension from the tip of the body, length change of hundreds of percent, and active control of growth direction. This results in the abilities to move through tightly constrained environments and form useful three-dimensional structures from the body. We report a class of soft pneumatic robot that is capable of a basic form of this behavior, growing substantially in length from the tip while actively controlling direction using onboard sensing of environmental stimuli; further, the peak rate of lengthening is comparable to rates of animal and robot locomotion. This is enabled by two principles: Pressurization of an inverted thin-walled vessel allows rapid and substantial lengthening of the tip of the robot body, and controlled asymmetric lengthening of the tip allows directional control. Further, we demonstrate the abilities to lengthen through constrained environments by exploiting passive deformations and form three-dimensional structures by lengthening the body of the robot along a path. Our study helps lay the foundation for engineered systems that grow to navigate the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...