Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunology ; 164(1): 90-105, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33880776

RESUMO

Intravenous immunoglobulin (IVIG) is an established treatment for numerous autoimmune conditions. Although Fc fragments derived from IVIG have shown efficacy in controlling immune thrombocytopenia in children, the mechanisms of action are unclear and controversial. The aim of this study was to dissect IVIG effector mechanisms using further adapted Fc fragments on demyelination in an ex vivo model of the central nervous system-immune interface. Using organotypic cerebellar slice cultures (OSCs) from transgenic mice, we induced extensive immune-mediated demyelination and oligodendrocyte loss with an antibody specific for myelin oligodendrocyte glycoprotein (MOG) and complement. Protective effects of adapted Fc fragments were assessed by live imaging of green fluorescent protein expression, immunohistochemistry and confocal microscopy. Cysteine- and glycan-adapted Fc fragments protected OSC from demyelination in a dose-dependent manner where equimolar concentrations of either IVIG or control Fc were ineffective. The protective effects of the adapted Fc fragments are partly attributed to interference with complement-mediated oligodendroglia damage. Transcriptome analysis ruled out signatures associated with inflammatory or innate immune responses. Taken together, our findings show that recombinant biomimetics can be made that are at least two hundred-fold more effective than IVIG in controlling demyelination by anti-MOG antibodies.


Assuntos
Autoanticorpos/uso terapêutico , Cerebelo/patologia , Doenças Desmielinizantes/terapia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoglobulina G/uso terapêutico , Oligodendroglia/patologia , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Autoanticorpos/genética , Cerebelo/efeitos dos fármacos , Doenças Desmielinizantes/imunologia , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Imunoglobulinas Intravenosas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Oligodendroglia/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Proteínas Recombinantes de Fusão/genética
2.
J Control Release ; 223: 42-52, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26718855

RESUMO

Monoclonal IgG antibodies (Abs) are used extensively in the clinic to treat cancer and autoimmune diseases. In addition, therapeutic proteins are genetically fused to the constant Fc part of IgG. In both cases, the Fc secures a long serum half-life and favourable pharmacokinetics due to its pH-dependent interaction with the neonatal Fc receptor (FcRn). FcRn also mediates transport of intact IgG across polarized epithelial barriers, a pathway that is attractive for delivery of Fc-containing therapeutics. So far, no study has thoroughly compared side-by-side how IgG and different Fc-fusion formats are transported across human polarizing epithelial cells. Here, we used an in vitro cellular transport assay based on the human polarizing epithelial cell line (T84) in which both IgG1 and Fc-fusions were transported in an FcRn-dependent manner. Furthermore, we found that the efficacy of transport was dependent on the format. We demonstrate that transepithelial delivery could be enhanced by Fc-engineering for improved FcRn binding as well as by Fc-polymerization. In both cases, transport was driven by pH-dependent binding kinetics and the pH at the luminal side. Hence, efficient transcellular delivery of IgG-based drugs across human epithelial cells requires optimal pH-dependent FcRn binding that can be manipulated by avidity and Fc-engineering, factors that should inspire the design of future therapeutics targeted for transmucosal delivery.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Receptores Fc/metabolismo , Anticorpos Monoclonais/metabolismo , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Polimerização , Engenharia de Proteínas , Receptores Fc/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
3.
PLoS Pathog ; 1(3): e22, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16276404

RESUMO

Trypanosoma brucei, the parasite causing human sleeping sickness, relies on the tsetse fly for its transmission. In the insect, EP and GPEET procyclins are the major surface glycoproteins of procyclic (midgut) forms of the parasite, with GPEET predominating in the early procyclic form and two isoforms of EP in the late procyclic form. EP procyclins were previously detected on salivary gland trypanosomes, presumably epimastigotes, by immunoelectron microscopy. However, no procyclins could be detected by mass spectrometry when parasites were isolated from infected glands. We have used qualitative and quantitative RT-PCR to analyse the procyclin mRNAs expressed by trypanosomes in the tsetse midgut and salivary glands at different time points after infection. The coding regions of the three EP isoforms (EP1, EP2 and EP3) are extremely similar, but their 3' untranslated regions contain unique sequences that make it possible to assign the cDNAs amplified by this technique. With the exception of EP2, we found that the spectrum of procyclin mRNAs expressed in the midgut mirrors the protein repertoire of early and established procyclic forms. Surprisingly, procyclin mRNAs, including that of GPEET, are present at relatively high levels in salivary gland trypanosomes, although the proteins are rarely detected by immunofluorescence. Additional experiments using transgenic trypanosomes expressing reporter genes or mutant forms of procyclin point to a mechanism of translational or post-translational control, involving the procyclin coding regions, in salivary gland trypanosomes. It is widely accepted that T. brucei always has a coat of either variant surface glycoprotein or procyclin. It has been known for many years that the epimastigote form does not have a variant surface glycoprotein coat. The finding that this life cycle stage is usually negative for procyclin as well is new, and means that the paradigm will need to be revised.


Assuntos
Glicoproteínas de Membrana/genética , Proteínas de Protozoários/genética , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genes de Protozoários/genética , Interações Hospedeiro-Parasita , Masculino , Camundongos , Camundongos Endogâmicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/anatomia & histologia
4.
Mol Biol Cell ; 14(3): 1182-94, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631733

RESUMO

The survival of Trypanosoma brucei, the causative agent of Sleeping Sickness and Nagana, is facilitated by the expression of a dense surface coat of glycosylphosphatidylinositol (GPI)-anchored proteins in both its mammalian and tsetse fly hosts. We have characterized T. brucei GPI8, the gene encoding the catalytic subunit of the GPI:protein transamidase complex that adds preformed GPI anchors onto nascent polypeptides. Deletion of GPI8 (to give Deltagpi8) resulted in the absence of GPI-anchored proteins from the cell surface of procyclic form trypanosomes and accumulation of a pool of non-protein-linked GPI molecules, some of which are surface located. Procyclic Deltagpi8, while viable in culture, were unable to establish infections in the tsetse midgut, confirming that GPI-anchored proteins are essential for insect-parasite interactions. Applying specific inducible GPI8 RNAi with bloodstream form parasites resulted in accumulation of unanchored variant surface glycoprotein and cell death with a defined multinuclear, multikinetoplast, and multiflagellar phenotype indicative of a block in cytokinesis. These data show that GPI-anchored proteins are essential for the viability of bloodstream form trypanosomes even in the absence of immune challenge and imply that GPI8 is important for proper cell cycle progression.


Assuntos
Moléculas de Adesão Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Mutação , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Carboidratos , Moléculas de Adesão Celular/genética , Ciclo Celular/fisiologia , Humanos , Manose/metabolismo , Dados de Sequência Molecular , Interferência de RNA , Alinhamento de Sequência , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , Tripanossomíase Africana , Moscas Tsé-Tsé/metabolismo , Moscas Tsé-Tsé/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...