Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 841138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531335

RESUMO

A sexual cycle was described in 2009 for the opportunistic fungal pathogen Aspergillus fumigatus, opening up for the first time the possibility of using techniques reliant on sexual crossing for genetic analysis. The present study was undertaken to evaluate whether the technique 'bulk segregant analysis' (BSA), which involves detection of differences between pools of progeny varying in a particular trait, could be applied in conjunction with next-generation sequencing to investigate the underlying basis of monogenic traits in A. fumigatus. Resistance to the azole antifungal itraconazole was chosen as a model, with a dedicated bioinformatic pipeline developed to allow identification of SNPs that differed between the resistant progeny pool and resistant parent compared to the sensitive progeny pool and parent. A clinical isolate exhibiting monogenic resistance to itraconazole of unknown basis was crossed to a sensitive parent and F1 progeny used in BSA. In addition, the use of backcrossing and increasing the number in progeny pools was evaluated as ways to enhance the efficiency of BSA. Use of F1 pools of 40 progeny led to the identification of 123 candidate genes with SNPs distributed over several contigs when aligned to an A1163 reference genome. Successive rounds of backcrossing enhanced the ability to identify specific genes and a genomic region, with BSA of progeny (using 40 per pool) from a third backcross identifying 46 genes with SNPs, and BSA of progeny from a sixth backcross identifying 20 genes with SNPs in a single 292 kb region of the genome. The use of an increased number of 80 progeny per pool also increased the resolution of BSA, with 29 genes demonstrating SNPs between the different sensitive and resistant groupings detected using progeny from just the second backcross with the majority of variants located on the same 292 kb region. Further bioinformatic analysis of the 292 kb region identified the presence of a cyp51A gene variant resulting in a methionine to lysine (M220K) change in the CYP51A protein, which was concluded to be the causal basis of the observed resistance to itraconazole. The future use of BSA in genetic analysis of A. fumigatus is discussed.


Assuntos
Aspergillus fumigatus , Azóis , Antifúngicos/farmacologia , Aspergillus fumigatus/metabolismo , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Itraconazol/metabolismo , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana
2.
Commun Biol ; 4(1): 691, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099857

RESUMO

Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs. Although the rearrangement of DNA methylation patterns occurring in the zygote has been extensively characterized, little is known about the dynamics of DNA modifications during spermatid maturation. Here, we demonstrate that the dynamics of 5-carboxylcytosine (5caC) correlate with active transcription of LINE-1 retroelements during murine spermiogenesis. We show that the open reading frames of active and evolutionary young LINE-1s are 5caC-enriched in round spermatids and 5caC is eliminated from LINE-1s and spermiogenesis-specific genes during spermatid maturation, being simultaneously retained at promoters and introns of developmental genes. Our results reveal an association of 5caC with activity of LINE-1 retrotransposons suggesting a potential direct role for this DNA modification in fine regulation of their transcription.


Assuntos
Citosina/análogos & derivados , Elementos Nucleotídeos Longos e Dispersos , Fases de Leitura Aberta , Espermátides/metabolismo , Animais , Citosina/metabolismo , Masculino , Camundongos , Espermátides/citologia , Espermatogênese , Transcrição Gênica
3.
Biotechnol Biofuels ; 13: 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32313551

RESUMO

BACKGROUND: Understanding how fungi degrade lignocellulose is a cornerstone of improving renewables-based biotechnology, in particular for the production of hydrolytic enzymes. Considerable progress has been made in investigating fungal degradation during time-points where CAZyme expression peaks. However, a robust understanding of the fungal survival strategies over its life time on lignocellulose is thereby missed. Here we aimed to uncover the physiological responses of the biotechnological workhorse and enzyme producer Aspergillus niger over its life time to six substrates important for biofuel production. RESULTS: We analysed the response of A. niger to the feedstock Miscanthus and compared it with our previous study on wheat straw, alone or in combination with hydrothermal or ionic liquid feedstock pretreatments. Conserved (substrate-independent) metabolic responses as well as those affected by pretreatment and feedstock were identified via multivariate analysis of genome-wide transcriptomics combined with targeted transcript and protein analyses and mapping to a metabolic model. Initial exposure to all substrates increased fatty acid beta-oxidation and lipid metabolism transcripts. In a strain carrying a deletion of the ortholog of the Aspergillus nidulans fatty acid beta-oxidation transcriptional regulator farA, there was a reduction in expression of selected lignocellulose degradative CAZyme-encoding genes suggesting that beta-oxidation contributes to adaptation to lignocellulose. Mannan degradation expression was wheat straw feedstock-dependent and pectin degradation was higher on the untreated substrates. In the later life stages, known and novel secondary metabolite gene clusters were activated, which are of high interest due to their potential to synthesize bioactive compounds. CONCLUSION: In this study, which includes the first transcriptional response of Aspergilli to Miscanthus, we highlighted that life time as well as substrate composition and structure (via variations in pretreatment and feedstock) influence the fungal responses to lignocellulose. We also demonstrated that the fungal response contains physiological stages that are conserved across substrates and are typically found outside of the conditions with high CAZyme expression, as exemplified by the stages that are dominated by lipid and secondary metabolism.

4.
Front Genet ; 8: 68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642786

RESUMO

The East African Shorthorn Zebu (EASZ) cattle are ancient hybrid between Asian zebu × African taurine cattle preferred by local farmers due to their adaptability to the African environment. The genetic controls of these adaptabilities are not clearly understood yet. Here, we genotyped 92 EASZ samples from Kenya (KEASZ) with more than 770,000 SNPs and sequenced the genome of a pool of 10 KEASZ. We observe an even admixed autosomal zebu × taurine genomic structure in the population. A total of 101 and 165 candidate regions of positive selection, based on genome-wide SNP analyses (meta-SS, Rsb, iHS, and ΔAF) and pooled heterozygosity (Hp) full genome sequence analysis, are identified, in which 35 regions are shared between them. A total of 142 functional variants, one novel, have been detected within these regions, in which 30 and 26 were classified as of zebu and African taurine origins, respectively. High density genome-wide SNP analysis of zebu × taurine admixed cattle populations from Uganda and Nigeria show that 25 of these regions are shared between KEASZ and Uganda cattle, and seven regions are shared across the KEASZ, Uganda, and Nigeria cattle. The identification of common candidate regions allows us to fine map 18 regions. These regions intersect with genes and QTL associated with reproduction and environmental stress (e.g., immunity and heat stress) suggesting that the genome of the zebu × taurine admixed cattle has been uniquely selected to maximize hybrid fitness both in terms of reproduction and survivability.

5.
Genes (Basel) ; 8(3)2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28282950

RESUMO

Winged bean (Psophocarpus tetragonolobus) is an herbaceous multipurpose legume grown in hot and humid countries as a pulse, vegetable (leaves and pods), or root tuber crop depending on local consumption preferences. In addition to its different nutrient-rich edible parts which could contribute to food and nutritional security, it is an efficient nitrogen fixer as a component of sustainable agricultural systems. Generating genetic resources and improved lines would help to accelerate the breeding improvement of this crop, as the lack of improved cultivars adapted to specific environments has been one of the limitations preventing wider use. A transcriptomic de novo assembly was constructed from four tissues: leaf, root, pod, and reproductive tissues from Malaysian accessions, comprising of 198,554 contigs with a N50 of 1462 bp. Of these, 138,958 (70.0%) could be annotated. Among 9682 genic simple sequence repeat (SSR) motifs identified (excluding monomer repeats), trinucleotide-repeats were the most abundant (4855), followed by di-nucleotide (4500) repeats. A total of 18 SSR markers targeting di- and tri-nucleotide repeats have been validated as polymorphic markers based on an initial assessment of nine genotypes originated from five countries. A cluster analysis revealed provisional clusters among this limited, yet diverse selection of germplasm. The developed assembly and validated genic SSRs in this study provide a foundation for a better understanding of the plant breeding system for the genetic improvement of winged bean.

6.
Biotechnol Biofuels ; 10: 35, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184248

RESUMO

BACKGROUND: The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. RESULTS: We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. CONCLUSIONS: The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production.

7.
Fungal Genet Biol ; 102: 4-21, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27150814

RESUMO

Gaining new knowledge through fungal monoculture responses to lignocellulose is a widely used approach that can lead to better cocktails for lignocellulose saccharification (the enzymatic release of sugars which are subsequently used to make biofuels). However, responses in lignocellulose mixed cultures are rarely studied in the same detail even though in nature fungi often degrade lignocellulose as mixed communities. Using a dual RNA-seq approach, we describe the first study of the transcriptional responses of wild-type strains of Aspergillus niger, Trichoderma reesei and Penicillium chrysogenum in two and three mixed species shake-flask cultures with wheat straw. Based on quantification of species-specific rRNA, a set of conditions was identified where mixed cultures could be sampled so as to obtain sufficient RNA-seq reads for analysis from each species. The number of differentially-expressed genes varied from a couple of thousand to fewer than one hundred. The proportion of carbohydrate active enzyme (CAZy) encoding transcripts was lower in the majority of the mixed cultures compared to the respective straw monocultures. A small subset of P. chrysogenum CAZy genes showed five to ten-fold significantly increased transcript abundance in a two-species mixed culture with T. reesei. However, a substantial number of T. reesei CAZy transcripts showed reduced abundance in mixed cultures. The highly induced genes in mixed cultures indicated that fungal antagonism was a major part of the mixed cultures. In line with this, secondary metabolite producing gene clusters showed increased transcript abundance in mixed cultures and also mixed cultures with T. reesei led to a decrease in the mycelial biomass of A. niger. Significantly higher monomeric sugar release from straw was only measured using a minority of the mixed culture filtrates and there was no overall improvement. This study demonstrates fungal interaction with changes in transcripts, enzyme activities and biomass in the mixed cultures and whilst there were minor beneficial effects for CAZy transcripts and activities, the competitive interaction between T. reesei and the other fungi was the most prominent feature of this study.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/genética , Metabolismo dos Carboidratos , Hidrolases/genética , Lignina/metabolismo , Transcriptoma , Antibiose , Aspergillus niger/enzimologia , Aspergillus niger/genética , Biomassa , Técnicas de Cocultura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrolases/metabolismo , Penicillium chrysogenum/efeitos dos fármacos , Penicillium chrysogenum/enzimologia , Penicillium chrysogenum/genética , Análise de Sequência de RNA , Trichoderma/enzimologia , Trichoderma/genética
8.
Fungal Genet Biol ; 94: 23-31, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27378203

RESUMO

The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration.


Assuntos
Aspergillus niger/metabolismo , Esporos Fúngicos/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Oxigênio/metabolismo , RNA Fúngico/metabolismo , Ácido Sórbico/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento
9.
PLoS One ; 11(2): e0148771, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859686

RESUMO

Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip) coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01) under the sub-optimal (23°C) and very sub-optimal (18°C) temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes) that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.


Assuntos
Fabaceae/crescimento & desenvolvimento , Fabaceae/genética , Genes de Plantas , Metabolismo dos Carboidratos/genética , Temperatura Baixa/efeitos adversos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Fabaceae/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Metabolismo dos Lipídeos/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Estresse Fisiológico , Fatores de Transcrição/genética
10.
Nucleic Acids Res ; 44(5): e41, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26578563

RESUMO

With the wide availability of whole-genome sequencing (WGS), genetic mapping has become the rate-limiting step, inhibiting unbiased forward genetics in even the most tractable model organisms. We introduce a rapid deconvolution resource and method for untagged causative mutations after mutagenesis, screens, and WGS in Escherichia coli. We created Deconvoluter-ordered libraries with selectable insertions every 50 kb in the E. coli genome. The Deconvoluter method uses these for replacement of untagged mutations in the genome using a phage-P1-based gene-replacement strategy. We validate the Deconvoluter resource by deconvolution of 17 of 17 phenotype-altering mutations from a screen of N-ethyl-N-nitrosourea-induced mutants. The Deconvoluter resource permits rapid unbiased screens and gene/function identification and will enable exploration of functions of essential genes and undiscovered genes/sites/alleles not represented in existing deletion collections. This resource for unbiased forward-genetic screens with mapping-by-sequencing ('forward genomics') demonstrates a strategy that could similarly enable rapid screens in many other microbes.


Assuntos
Escherichia coli/genética , Biblioteca Gênica , Genoma Bacteriano , Genômica/métodos , Mutagênese Insercional/métodos , Mutação , Algoritmos , Bacteriófago P1/genética , Escherichia coli/efeitos dos fármacos , Etilnitrosoureia/farmacologia , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
11.
Fungal Genet Biol ; 72: 34-47, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24792495

RESUMO

Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes.


Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/metabolismo , Metabolismo dos Carboidratos , Carbono/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas Fúngicas/análise , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Caules de Planta/metabolismo , Proteoma/análise , Análise de Sequência de RNA , Triticum/metabolismo
12.
Virus Res ; 188: 68-80, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24732177

RESUMO

Alcelaphine herpesvirus-1 (AlHV-1) causes malignant catarrhal fever (MCF). The A2 gene of AlHV-1 is a member of the bZIP transcription factor family. We wished to determine whether A2 is a virulence gene or not and whether it is involved in pathogenesis by interference with host transcription pathways. An A2 gene knockout (A2ΔAlHV-1) virus, revertant (A2revAlHV-1) virus, and wild-type virus (wtAlHV-1) were used to infect three groups of rabbits. A2ΔAlHV-1-infected rabbits succumbed to MCF, albeit with a delayed onset compared to the control groups, so A2 is not a critical virulence factor. Differential gene transcription analysis by RNAseq and qRT-PCR validation of a selection of these was performed in infected large granular lymphocyte (LGL) T cells obtained in culture from the MCF-affected animals. A2 was involved in the transcriptional regulation of immunological, cell cycle and apoptosis pathways. In particular, there was a bias towards γδ T cell receptor (TCR) expression and downregulation of αß TCR. TCR signalling, apoptosis, cell cycle, IFN-γ and NFAT pathways were affected. Of particular interest was partial inhibition of the cytotoxicity-associated pathways involving perforin and the granzymes A and B in the A2ΔAlHV-1-infected LGLs compared to controls. In functional assays, A2ΔAlHV-1-infected LGLs were significantly less cytotoxic than wtAlHV-1- and A2revAlHV-1-infected LGLs using rabbit corneal epithelial cells (SIRC) as targets. This implies that A2 is involved in a pathway enhancing the expression of LGL cytotoxicity. This is important as virus-infected T cell cytotoxicity in vivo has been suggested as a potential mechanism of disease induction in MCF.


Assuntos
Genes Virais , Herpesviridae/fisiologia , Febre Catarral Maligna/virologia , Doenças dos Roedores/virologia , Linfócitos T/virologia , Fatores de Transcrição/metabolismo , Replicação Viral , Animais , Feminino , Deleção de Genes , Regulação Viral da Expressão Gênica , Herpesviridae/genética , Herpesviridae/patogenicidade , Interações Hospedeiro-Patógeno , Febre Catarral Maligna/patologia , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Doenças dos Roedores/patologia , Análise de Sequência de DNA , Fatores de Transcrição/genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(5): 1903-8, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449889

RESUMO

Kinetochores in multicellular eukaryotes are usually associated with heterochromatin. Whether this heterochromatin simply promotes the cohesion necessary for accurate chromosome segregation at cell division or whether it also has a role in kinetochore assembly is unclear. Schizosaccharomyces pombe is an important experimental system for investigating centromere function, but all of the previous work with this species has exploited a single strain or its derivatives. The laboratory strain and most other S. pombe strains contain three chromosomes, but one recently discovered strain, CBS 2777, contains four. We show that the genome of CBS 2777 is related to that of the laboratory strain by a complex chromosome rearrangement. As a result, two of the kinetochores in CBS 2777 contain the central core sequences present in the laboratory strain centromeres, but lack adjacent heterochromatin. The closest block of heterochromatin to these rearranged kinetochores is ∼100 kb away at new telomeres. Despite lacking large amounts of adjacent heterochromatin, the rearranged kinetochores bind CENP-A(Cnp1) and CENP-C(Cnp3) in similar quantities and with similar specificities as those of the laboratory strain. The simplest interpretation of this result is that constitutive kinetochore assembly and heterochromatin formation occur autonomously.


Assuntos
Heterocromatina/metabolismo , Cinetocoros/metabolismo , Schizosaccharomyces/metabolismo , DNA Fúngico/metabolismo , Genoma Fúngico/genética , Modelos Biológicos , Ligação Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Telômero/genética
14.
Fungal Biol Biotechnol ; 1(1): 1-14, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26457194

RESUMO

BACKGROUND: Saprobic fungi are the predominant industrial sources of Carbohydrate Active enZymes (CAZymes) used for the saccharification of lignocellulose during the production of second generation biofuels. The production of more effective enzyme cocktails is a key objective for efficient biofuel production. To achieve this objective, it is crucial to understand the response of fungi to lignocellulose substrates. Our previous study used RNA-seq to identify the genes induced in Aspergillus niger in response to wheat straw, a biofuel feedstock, and showed that the range of genes induced was greater than previously seen with simple inducers. RESULTS: In this work we used RNA-seq to identify the genes induced in A. niger in response to short rotation coppice willow and compared this with the response to wheat straw from our previous study, at the same time-point. The response to willow showed a large increase in expression of genes encoding CAZymes. Genes encoding the major activities required to saccharify lignocellulose were induced on willow such as endoglucanases, cellobiohydrolases and xylanases. The transcriptome response to willow had many similarities with the response to straw with some significant differences in the expression levels of individual genes which are discussed in relation to differences in substrate composition or other factors. Differences in transcript levels include higher levels on wheat straw from genes encoding enzymes classified as members of GH62 (an arabinofuranosidase) and CE1 (a feruloyl esterase) CAZy families whereas two genes encoding endoglucanases classified as members of the GH5 family had higher transcript levels when exposed to willow. There were changes in the cocktail of enzymes secreted by A. niger when cultured with willow or straw. Assays for particular enzymes as well as saccharification assays were used to compare the enzyme activities of the cocktails. Wheat straw induced an enzyme cocktail that saccharified wheat straw to a greater extent than willow. Genes not encoding CAZymes were also induced on willow such as hydrophobins as well as genes of unknown function. Several genes were identified as promising targets for future study. CONCLUSIONS: By comparing this first study of the global transcriptional response of a fungus to willow with the response to straw, we have shown that the inducing lignocellulosic substrate has a marked effect upon the range of transcripts and enzymes expressed by A. niger. The use by industry of complex substrates such as wheat straw or willow could benefit efficient biofuel production.

15.
Nucleic Acids Res ; 42(1): e3, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24089142

RESUMO

Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology.


Assuntos
Replicação do DNA , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Origem de Replicação , Saccharomyces cerevisiae/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-28955445

RESUMO

BACKGROUND: Saprobic fungi are the predominant industrial sources of Carbohydrate Active enZymes (CAZymes) used for the saccharification of lignocellulose during the production of second generation biofuels. The production of more effective enzyme cocktails is a key objective for efficient biofuel production. To achieve this objective, it is crucial to understand the response of fungi to lignocellulose substrates. Our previous study used RNA-seq to identify the genes induced in Aspergillus niger in response to wheat straw, a biofuel feedstock, and showed that the range of genes induced was greater than previously seen with simple inducers. RESULTS: In this work we used RNA-seq to identify the genes induced in A. niger in response to short rotation coppice willow and compared this with the response to wheat straw from our previous study, at the same time-point. The response to willow showed a large increase in expression of genes encoding CAZymes. Genes encoding the major activities required to saccharify lignocellulose were induced on willow such as endoglucanases, cellobiohydrolases and xylanases. The transcriptome response to willow had many similarities with the response to straw with some significant differences in the expression levels of individual genes which are discussed in relation to differences in substrate composition or other factors. Differences in transcript levels include higher levels on wheat straw from genes encoding enzymes classified as members of GH62 (an arabinofuranosidase) and CE1 (a feruloyl esterase) CAZy families whereas two genes encoding endoglucanases classified as members of the GH5 family had higher transcript levels when exposed to willow. There were changes in the cocktail of enzymes secreted by A. niger when cultured with willow or straw. Assays for particular enzymes as well as saccharification assays were used to compare the enzyme activities of the cocktails. Wheat straw induced an enzyme cocktail that saccharified wheat straw to a greater extent than willow. Genes not encoding CAZymes were also induced on willow such as hydrophobins as well as genes of unknown function. Several genes were identified as promising targets for future study. CONCLUSIONS: By comparing this first study of the global transcriptional response of a fungus to willow with the response to straw, we have shown that the inducing lignocellulosic substrate has a marked effect upon the range of transcripts and enzymes expressed by A. niger. The use by industry of complex substrates such as wheat straw or willow could benefit efficient biofuel production.

17.
Nature ; 503(7477): 544-547, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24185008

RESUMO

DNA replication initiates at defined sites called origins, which serve as binding sites for initiator proteins that recruit the replicative machinery. Origins differ in number and structure across the three domains of life and their properties determine the dynamics of chromosome replication. Bacteria and some archaea replicate from single origins, whereas most archaea and all eukaryotes replicate using multiple origins. Initiation mechanisms that rely on homologous recombination operate in some viruses. Here we show that such mechanisms also operate in archaea. We use deep sequencing to study replication in Haloferax volcanii and identify four chromosomal origins of differing activity. Deletion of individual origins results in perturbed replication dynamics and reduced growth. However, a strain lacking all origins has no apparent defects and grows significantly faster than wild type. Origin-less cells initiate replication at dispersed sites rather than at discrete origins and have an absolute requirement for the recombinase RadA, unlike strains lacking individual origins. Our results demonstrate that homologous recombination alone can efficiently initiate the replication of an entire cellular genome. This raises the question of what purpose replication origins serve and why they have evolved.


Assuntos
Replicação do DNA/genética , Haloferax volcanii/crescimento & desenvolvimento , Haloferax volcanii/genética , Origem de Replicação , Proteínas Arqueais/metabolismo , DNA Arqueal/análise , DNA Arqueal/biossíntese , DNA Arqueal/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Homóloga/genética , Modelos Genéticos , Origem de Replicação/genética , Fatores de Tempo
18.
DNA Repair (Amst) ; 12(11): 993-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24075571

RESUMO

Thymineless death (TLD) is the rapid loss of colony-forming ability in bacterial, yeast and human cells starved for thymine, and is the mechanism of action of common chemotherapeutic drugs. In Escherichia coli, significant loss of viability during TLD requires the SOS replication-stress/DNA-damage response, specifically its role in inducing the inhibitor of cell division, SulA. An independent RecQ- and RecJ-dependent TLD pathway accounts for a similarly large additional component of TLD, and a third SOS- and RecQ/J-independent TLD pathway has also been observed. Although two groups have implicated the SOS-response in TLD, an SOS-deficient mutant strain from an earlier study was found to be sensitive to thymine deprivation. We performed whole-genome resequencing on that SOS-deficient strain and find that, compared with the SOS-proficient control strain, it contains five mutations in addition to the SOS-blocking lexA(Ind(-)) mutation. One of the additional mutations, csrA, confers TLD sensitivity specifically in SOS-defective strains. We find that CsrA, a carbon storage regulator, reduces TLD in SOS- or SulA-defective cells, and that the increased TLD that occurs in csrA(-) SOS-defective cells is dependent on RecQ. We consider a hypothesis in which the modulation of nucleotide pools by CsrA might inhibit TLD specifically in SOS-deficient (SulA-deficient) cells.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Resposta SOS em Genética , Timina/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia , Genoma Bacteriano , Viabilidade Microbiana , Mutação de Sentido Incorreto , Recombinação Genética , Serina Endopeptidases/metabolismo
19.
BMC Genomics ; 14: 541, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-24060058

RESUMO

BACKGROUND: A major part of second generation biofuel production is the enzymatic saccharification of lignocellulosic biomass into fermentable sugars. Many fungi produce enzymes that can saccarify lignocellulose and cocktails from several fungi, including well-studied species such as Trichoderma reesei and Aspergillus niger, are available commercially for this process. Such commercially-available enzyme cocktails are not necessarily representative of the array of enzymes used by the fungi themselves when faced with a complex lignocellulosic material. The global induction of genes in response to exposure of T. reesei to wheat straw was explored using RNA-seq and compared to published RNA-seq data and model of how A. niger senses and responds to wheat straw. RESULTS: In T. reesei, levels of transcript that encode known and predicted cell-wall degrading enzymes were very high after 24h exposure to straw (approximately 13% of the total mRNA) but were less than recorded in A. niger (approximately 19% of the total mRNA). Closer analysis revealed that enzymes from the same glycoside hydrolase families but different carbohydrate esterase and polysaccharide lyase families were up-regulated in both organisms. Accessory proteins which have been hypothesised to possibly have a role in enhancing carbohydrate deconstruction in A. niger were also uncovered in T. reesei and categories of enzymes induced were in general similar to those in A. niger. Similarly to A. niger, antisense transcripts are present in T. reesei and their expression is regulated by the growth condition. CONCLUSIONS: T. reesei uses a similar array of enzymes, for the deconstruction of a solid lignocellulosic substrate, to A. niger. This suggests a conserved strategy towards lignocellulose degradation in both saprobic fungi. This study provides a basis for further analysis and characterisation of genes shown to be highly induced in the presence of a lignocellulosic substrate. The data will help to elucidate the mechanism of solid substrate recognition and subsequent degradation by T. reesei and provide information which could prove useful for efficient production of second generation biofuels.


Assuntos
Aspergillus niger/metabolismo , Genoma Bacteriano , Lignina/metabolismo , RNA Bacteriano/genética , Transcrição Gênica
20.
PLoS One ; 8(7): e68191, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844170

RESUMO

The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L(-1)) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators.


Assuntos
Abelhas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Inseticidas/farmacologia , Redes e Vias Metabólicas/genética , Animais , Abelhas/metabolismo , Metabolismo dos Carboidratos/genética , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/genética , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Ontologia Genética , Glicólise/genética , Proteínas de Choque Térmico HSP90/genética , Imidazóis/farmacologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/análise , Espectrometria de Massas , MicroRNAs/genética , Neonicotinoides , Nitrocompostos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...