Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(17): 1610-1624.e8, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37478844

RESUMO

The eukaryotic genome is organized to enable the precise regulation of gene expression. This organization is established as the embryo transitions from a fertilized gamete to a totipotent zygote. To understand the factors and processes that drive genomic organization, we focused on the pioneer factor GAGA factor (GAF) that is required for early development in Drosophila. GAF transcriptionally activates the zygotic genome and is localized to subnuclear foci. This non-uniform distribution is driven by binding to highly abundant GA repeats. At GA repeats, GAF is necessary to form heterochromatin and silence transcription. Thus, GAF is required to establish both active and silent regions. We propose that foci formation enables GAF to have opposing transcriptional roles within a single nucleus. Our data support a model in which the subnuclear concentration of transcription factors acts to organize the nucleus into functionally distinct domains essential for the robust regulation of gene expression.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , DNA/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
2.
Elife ; 92020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33074101

RESUMO

Thermodynamic models of gene regulation can predict transcriptional regulation in bacteria, but in eukaryotes, chromatin accessibility and energy expenditure may call for a different framework. Here, we systematically tested the predictive power of models of DNA accessibility based on the Monod-Wyman-Changeux (MWC) model of allostery, which posits that chromatin fluctuates between accessible and inaccessible states. We dissected the regulatory dynamics of hunchback by the activator Bicoid and the pioneer-like transcription factor Zelda in living Drosophila embryos and showed that no thermodynamic or non-equilibrium MWC model can recapitulate hunchback transcription. Therefore, we explored a model where DNA accessibility is not the result of thermal fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone acetylation, and found that this model can predict hunchback dynamics. Thus, our theory-experiment dialogue uncovered potential molecular mechanisms of transcriptional regulatory dynamics, a key step toward reaching a predictive understanding of developmental decision-making.


Cells in the brain, liver and skin, as well as many other organs, all contain the same DNA, yet behave in very different ways. This is because before a gene can produce its corresponding protein, it must first be transcribed into messenger RNA. As an organism grows, the transcription of certain genes is switched on or off by regulatory molecules called transcription factors, which guide cells towards a specific 'fate'. These molecules bind to specific locations within the regulatory regions of DNA, and for decades biologist have tried to use the arrangement of these sites to predict which proteins a cell will make. Theoretical models known as thermodynamic models have been able to successfully predict transcription in bacteria. However, this has proved more challenging to do in eukaryotes, such as yeast, fruit flies and humans. One of the key differences is that DNA in eukaryotes is typically tightly wound into bundles called nucleosomes, which must be disentangled in order for transcription factors to access the DNA. Previous thermodynamic models have suggested that DNA in eukaryotes randomly switches between being in a wound and unwound state. The models assume that once unwound, regulatory proteins stabilize the DNA in this form, making it easier for other transcription factors to bind to the DNA. Now, Eck, Liu et al. have tested some of these models by studying the transcription of a gene involved in the development of fruit flies. The experiments showed that no thermodynamic model could accurately mimic how this gene is regulated in the embryos of fruit flies. This led Eck, Liu et al. to identify a model that is better at predicting the activation pattern of this developmental gene. In this model, instead of just 'locking' DNA into an unwound shape, transcription factors can also actively speed up the unwinding of DNA. This improved understanding builds towards the goal of predicting gene regulation, where DNA sequences can be used to tell where and when cell decisions will be made. In the future, this could allow the development of new types of therapies that can regulate transcription in different diseases.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Homeodomínio/genética , Modelos Genéticos , Proteínas Nucleares/genética , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Acetilação , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Larva/genética , Larva/metabolismo , Proteínas Nucleares/metabolismo , Termodinâmica , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
3.
Elife ; 92020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32347792

RESUMO

Because chromatin determines whether information encoded in DNA is accessible to transcription factors, dynamic chromatin states in development may constrain how gene regulatory networks impart embryonic pattern. To determine the interplay between chromatin states and regulatory network function, we performed ATAC-seq on Drosophila embryos during the establishment of the segmentation network, comparing wild-type and mutant embryos in which all graded maternal patterning inputs are eliminated. While during the period between zygotic genome activation and gastrulation many regions maintain stable accessibility, cis-regulatory modules (CRMs) within the network undergo extensive patterning-dependent changes in accessibility. A component of the network, Odd-paired (opa), is necessary for pioneering accessibility of late segmentation network CRMs. opa-driven changes in accessibility are accompanied by equivalent changes in gene expression. Interfering with the timing of opa activity impacts the proper patterning of expression. These results indicate that dynamic systems for chromatin regulation directly impact the reading of embryonic patterning information.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Zigoto/fisiologia , Animais , Cromatina/química , Cromatina/fisiologia , Ativação Transcricional
4.
Dev Cell ; 52(6): 794-801.e4, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32142631

RESUMO

Optogenetic perturbations, live imaging, and time-resolved ChIP-seq assays in Drosophila embryos were used to dissect the ERK-dependent control of the HMG-box repressor Capicua (Cic), which plays critical roles in development and is deregulated in human spinocerebellar ataxia and cancers. We established that Cic target genes are activated before significant downregulation of nuclear localization of Cic and demonstrated that their activation is preceded by fast dissociation of Cic from the regulatory DNA. We discovered that both Cic-DNA binding and repression are rapidly reinstated in the absence of ERK activation, revealing that inductive signaling must be sufficiently sustained to ensure robust transcriptional response. Our work provides a quantitative framework for the mechanistic analysis of dynamics and control of transcriptional repression in development.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas HMGB/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Repressoras/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/genética , Ligação Proteica , Proteínas Repressoras/genética
5.
Dev Biol ; 462(1): 20-35, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32119833

RESUMO

As development proceeds, inductive cues are interpreted by competent tissues in a spatially and temporally restricted manner. While key inductive signaling pathways within competent cells are well-described at a molecular level, the mechanisms by which tissues lose responsiveness to inductive signals are not well understood. Localized activation of Wnt signaling before zygotic gene activation in Xenopus laevis leads to dorsal development, but competence to induce dorsal genes in response to Wnts is lost by the late blastula stage. We hypothesize that loss of competence is mediated by changes in histone modifications leading to a loss of chromatin accessibility at the promoters of Wnt target genes. We use ATAC-seq to evaluate genome-wide changes in chromatin accessibility across several developmental stages. Based on overlap with p300 binding, we identify thousands of putative cis-regulatory elements at the gastrula stage, including sites that lose accessibility by the end of gastrulation and are enriched for pluripotency factor binding motifs. Dorsal Wnt target gene promoters are not accessible after the loss of competence in the early gastrula while genes involved in mesoderm and neural crest development maintain accessibility at their promoters. Inhibition of histone deacetylases increases acetylation at the promoters of dorsal Wnt target genes and extends competence for dorsal gene induction by Wnt signaling. Histone deacetylase inhibition, however, is not sufficient to extend competence for mesoderm or neural crest induction. These data suggest that chromatin state regulates the loss of competence to inductive signals in a context-dependent manner.


Assuntos
Cromatina/metabolismo , Indução Embrionária/genética , Histonas/metabolismo , Acetilação , Animais , Blástula/metabolismo , Cromatina/genética , Gástrula/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/genética , Mesoderma/metabolismo , Crista Neural/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
6.
Elife ; 62017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28891464

RESUMO

In Drosophila, graded expression of the maternal transcription factor Bicoid (Bcd) provides positional information to activate target genes at different positions along the anterior-posterior axis. We have measured the genome-wide binding profile of Bcd using ChIP-seq in embryos expressing single, uniform levels of Bcd protein, and grouped Bcd-bound targets into four classes based on occupancy at different concentrations. By measuring the biochemical affinity of target enhancers in these classes in vitro and genome-wide chromatin accessibility by ATAC-seq, we found that the occupancy of target sequences by Bcd is not primarily determined by Bcd binding sites, but by chromatin context. Bcd drives an open chromatin state at a subset of its targets. Our data support a model where Bcd influences chromatin structure to gain access to concentration-sensitive targets at high concentrations, while concentration-insensitive targets are found in more accessible chromatin and are bound at low concentrations. This may be a common property of developmental transcription factors that must gain early access to their target enhancers while the chromatin state of the genome is being remodeled during large-scale transitions in the gene regulatory landscape.


Assuntos
Cromatina/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Animais , Imunoprecipitação da Cromatina , Proteínas de Drosophila , Ligação Proteica , Análise de Sequência de DNA
7.
Elife ; 52016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27879204

RESUMO

During embryogenesis, the initial chromatin state is established during a period of rapid proliferative activity. We have measured with 3-min time resolution how heritable patterns of chromatin structure are initially established and maintained during the midblastula transition (MBT). We find that regions of accessibility are established sequentially, where enhancers are opened in advance of promoters and insulators. These open states are stably maintained in highly condensed mitotic chromatin to ensure faithful inheritance of prior accessibility status across cell divisions. The temporal progression of establishment is controlled by the biological timers that control the onset of the MBT. In general, acquisition of promoter accessibility is controlled by the biological timer that measures the nucleo-cytoplasmic (N:C) ratio, whereas timing of enhancer accessibility is regulated independently of the N:C ratio. These different timing classes each associate with binding sites for two transcription factors, GAGA-factor and Zelda, previously implicated in controlling chromatin accessibility at ZGA.


Assuntos
Cromatina/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Padrões de Herança , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Relógios Biológicos/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Elementos Facilitadores Genéticos , Elementos Isolantes , Proteínas Nucleares , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo
8.
Curr Top Dev Biol ; 113: 113-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26358872

RESUMO

During the maternal-to-zygotic transition (MZT), major changes in cell cycle regulation coincide with large-scale zygotic genome activation. In this chapter, we discuss the current understanding of how the cell cycle is remodeled over the course of the Drosophila MZT, and how the temporal precision of this event is linked to contemporaneous alterations in genome-wide chromatin structure and transcriptional activity. The cell cycle is initially lengthened during the MZT by activation of the DNA replication checkpoint but, subsequently, zygotically supplied factors are essential for establishing lasting modifications to the cell cycle.


Assuntos
Ciclo Celular , Drosophila melanogaster/citologia , Ativação Transcricional/genética , Animais , Blástula/citologia , Drosophila melanogaster/genética , Genoma de Inseto , Zigoto/citologia
9.
Cell ; 160(6): 1169-81, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25748651

RESUMO

A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell-cycle remodeling and zygotic genome activation (ZGA). We have investigated what triggers this checkpoint during Drosophila embryogenesis. We find that the magnitude of the checkpoint scales with the quantity of transcriptionally engaged DNA. Measuring RNA polymerase II (Pol II) binding at 20 min intervals over the course of ZGA reveals that the checkpoint coincides with widespread de novo recruitment of Pol II that precedes and does not require a functional checkpoint. This recruitment drives slowing or stalling of DNA replication at transcriptionally engaged loci. Reducing Pol II recruitment in zelda mutants both reduces replication stalling and bypasses the requirement for a functional checkpoint. This suggests a model where the checkpoint functions as a feedback mechanism to remodel the cell cycle in response to nascent ZGA.


Assuntos
Replicação do DNA , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Zigoto/metabolismo , Animais , Blástula/citologia , Blástula/metabolismo , Ciclo Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Feminino , Masculino , Proteínas Nucleares , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Proteína de Replicação A/metabolismo , Fatores de Transcrição/metabolismo
10.
Curr Biol ; 23(2): 127-32, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23290553

RESUMO

In most metazoans, early embryonic development is characterized by rapid mitotic divisions that are controlled by maternal mRNAs and proteins that accumulate during oogenesis. These rapid divisions pause at the midblastula transition (MBT), coinciding with a dramatic increase in gene transcription and the degradation of a subset of maternal mRNAs. In Drosophila, the cell-cycle pause is controlled by inhibitory phosphorylation of Cdk1, which in turn is driven by downregulation of the activating Cdc25 phosphatases. Here, we show that the two Drosophila Cdc25 homologs, String and Twine, differ in their dynamics and that, contrary to current models, their downregulations are not controlled by mRNA degradation but through different posttranslational mechanisms. The degradation rate of String protein gradually increases during the late syncytial cycles in a manner dependent on the nuclear-to-cytoplasmic ratio and on the DNA replication checkpoints. Twine, on the other hand, is targeted for degradation at the onset of the MBT through a switch-like mechanism controlled, like String, by the nuclear-to-cytoplasmic ratio, but not requiring the DNA replication checkpoints. We demonstrate that posttranslational control of Twine degradation ensures that the proper number of mitoses precede the MBT.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Proteínas Tirosina Fosfatases/metabolismo , Fosfatases cdc25/metabolismo , Animais , Drosophila/metabolismo , Desenvolvimento Embrionário , Processamento de Proteína Pós-Traducional
11.
Dev Dyn ; 242(2): 108-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23184530

RESUMO

BACKGROUND: Histone deacetylases (HDACs) regulate multiple developmental processes and cellular functions. However, their roles in blood development have not been determined, and in Xenopus laevis a specific function for HDACs has yet to be identified. Here, we employed the class I selective HDAC inhibitor, valproic acid (VPA), to show that HDAC activity is required for primitive hematopoiesis. RESULTS: VPA treatment during gastrulation resulted in a complete absence of red blood cells (RBCs) in Xenopus tadpoles, but did not affect development of other mesodermal tissues, including myeloid and endothelial lineages. These effects of VPA were mimicked by Trichostatin A (TSA), a well-established pan-HDAC inhibitor, but not by valpromide, which is structurally similar to VPA but does not inhibit HDACs. VPA also caused a marked, dose-dependent loss of primitive erythroid progenitors in mouse yolk sac explants at clinically relevant concentrations. In addition, VPA treatment inhibited erythropoietic development downstream of bmp4 and gata1 in Xenopus ectodermal explants. CONCLUSIONS: These findings suggest an important role for class I HDACs in primitive hematopoiesis. Our work also demonstrates that specific developmental defects associated with exposure to VPA, a significant teratogen in humans, arise through inhibition of class I HDACs.


Assuntos
Gástrula/efeitos dos fármacos , Hematopoese/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Xenopus laevis/embriologia , Animais , Primers do DNA/genética , Células Precursoras Eritroides/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Immunoblotting , Hibridização In Situ , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Ácido Valproico/farmacologia , Saco Vitelino/citologia
12.
Dev Cell ; 21(6): 977-8, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22172664

RESUMO

Recent work has raised the possibility that chromatin modifications pre-set embryonic patterns of gene expression. In this issue of Developmental Cell, Lindeman et al. (2011) support this observation and describe how the pattern of several chromatin marks evolves over the transition from maternal to zygotic control of development.

13.
Dev Cell ; 19(2): 220-31, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20708585

RESUMO

An emerging concept in development is that transcriptional poising presets patterns of gene expression in a manner that reflects a cell's developmental potential. However, it is not known how certain loci are specified in the embryo to establish poised chromatin architecture as the developmental program unfolds. We find that, in the context of transcriptional quiescence prior to the midblastula transition in Xenopus, dorsal specification by the Wnt/beta-catenin pathway is temporally uncoupled from the onset of dorsal target gene expression, and that beta-catenin establishes poised chromatin architecture at target promoters. beta-catenin recruits the arginine methyltransferase Prmt2 to target promoters, thereby establishing asymmetrically dimethylated H3 arginine 8 (R8). Recruitment of Prmt2 to beta-catenin target genes is necessary and sufficient to establish the dorsal developmental program, indicating that Prmt2-mediated histone H3(R8) methylation plays a critical role downstream of beta-catenin in establishing poised chromatin architecture and marking key organizer genes for later expression.


Assuntos
Arginina/metabolismo , Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , beta Catenina/metabolismo , Animais , Cromatina/química , Cromatina/metabolismo , Histonas/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteína-Arginina N-Metiltransferases/genética , RNA Polimerase II/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/anatomia & histologia , Xenopus laevis/fisiologia , beta Catenina/genética
14.
Development ; 137(9): 1531-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20356957

RESUMO

In vertebrates, canonical Wnt signaling controls posterior neural cell lineage specification. Although Wnt signaling to the neural plate is sufficient for posterior identity, the source and timing of this activity remain uncertain. Furthermore, crucial molecular targets of this activity have not been defined. Here, we identify the endogenous Wnt activity and its role in controlling an essential downstream transcription factor, Meis3. Wnt3a is expressed in a specialized mesodermal domain, the paraxial dorsolateral mesoderm, which signals to overlying neuroectoderm. Loss of zygotic Wnt3a in this region does not alter mesoderm cell fates, but blocks Meis3 expression in the neuroectoderm, triggering the loss of posterior neural fates. Ectopic Meis3 protein expression is sufficient to rescue this phenotype. Moreover, Wnt3a induction of the posterior nervous system requires functional Meis3 in the neural plate. Using ChIP and promoter analysis, we show that Meis3 is a direct target of Wnt/beta-catenin signaling. This suggests a new model for neural anteroposterior patterning, in which Wnt3a from the paraxial mesoderm induces posterior cell fates via direct activation of a crucial transcription factor in the overlying neural plate.


Assuntos
Proteínas de Homeodomínio/metabolismo , Mesoderma/embriologia , Placa Neural/embriologia , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Imunoprecipitação da Cromatina , Proteínas de Homeodomínio/genética , Hibridização In Situ , Técnicas In Vitro , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A , Proteínas de Xenopus/genética , Xenopus laevis , Proteínas de Peixe-Zebra/genética , beta Catenina/genética , beta Catenina/metabolismo
15.
Dev Dyn ; 238(6): 1422-32, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19334278

RESUMO

Chromatin immunoprecipitation (ChIP) is a powerful method for analyzing the interaction of regulatory proteins with genomic loci, but has been difficult to apply to studies on early embryos due to the limiting amount of genomic material in these samples. Here, we present a comprehensive technique for performing ChIP on blastula and gastrula stage Xenopus embryos. We also describe methods for optimizing crosslinking and chromatin shearing, verifying antibody specificity, maximizing PCR sensitivity, and quantifying PCR results, allowing for the use of as few as 50 early blastula stage embryos (approximately 5x10(4) cells) per experimental condition. Finally, we demonstrate the predicted binding of endogenous beta-catenin to the nodal-related 6 promoter, binding of tagged Fast-1/FoxH1 to the goosecoid promoter, and binding of tagged Tcf3 to the siamois and nodal-related 6 promoters as examples of the potential application of ChIP to embryological investigations. Developmental Dynamics 238:1422-1432, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Imunoprecipitação da Cromatina , Reação em Cadeia da Polimerase/métodos , Xenopus laevis , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteína Goosecoid/genética , Proteína Goosecoid/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...