Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Tissue Viability ; 33(3): 487-503, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38769034

RESUMO

Severe bacterial infections can give rise to protracted wound healing processes, thereby posing a significant risk to a patient's well-being. Consequently, the development of a versatile hydrogel dressing possessing robust bioactivity becomes imperative, as it holds the potential to expedite wound healing and yield enhanced clinical therapeutic outcomes. In this context, the present study involves the formulation of an injectable multifunctional hydrogel utilizing laponite (LAP) and lactoferrin (LF) as foundational components and loaded with eugenol (EG). This hydrogel is fabricated employing a straightforward one-pot mixing approach that leverages the principle of electrostatic interaction. The resulting LAP/LF/EG2% composite hydrogel can be conveniently injected to address irregular wound geometries effectively. Once administered, the hydrogel continually releases lactoferrin and eugenol, mitigating unwarranted oxidative stress and eradicating bacterial infections. This orchestrated action culminates in the acceleration of wound healing specifically in the context of MRSA-infected wounds. Importantly, the LAP/LF/EG2% hydrogel exhibits commendable qualities including exceptional injectability, potent antioxidant attributes, and proficient hemostatic functionality. Furthermore, the hydrogel composition notably encourages cellular migration while maintaining favorable cytocompatibility. Additionally, the hydrogel manifests noteworthy bactericidal efficacy against the formidable multidrug-resistant MRSA bacterium. Most significantly, this hydrogel formulation distinctly expedites the healing of MRSA-infected wounds by promptly inducing hemostasis, curbing bacterial proliferation, and fostering angiogenesis, collagen deposition, and re-epithelialization processes. As such, the innovative hydrogel material introduced in this investigation emerges as a promising dressing for the facilitation of bacterial-infected wound healing and consequent tissue regeneration.


Assuntos
Eugenol , Hidrogéis , Lactoferrina , Staphylococcus aureus Resistente à Meticilina , Silicatos , Cicatrização , Cicatrização/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Silicatos/farmacologia , Silicatos/uso terapêutico , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Eugenol/farmacologia , Eugenol/uso terapêutico , Lactoferrina/farmacologia , Lactoferrina/uso terapêutico , Lactoferrina/administração & dosagem , Humanos , Animais , Ratos , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem
2.
Am J Chin Med ; 52(2): 493-512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480500

RESUMO

Eugenol (EU) has been shown to ameliorate experimental colitis due to its anti-oxidant and anti-inflammatory bioactivities. In this study, DSS-induced acute colitis was established and applied to clarify the regulation efficacy of EU on intestinal barrier impairment and macrophage polarization imbalance along with the inflammatory response. Besides, the adjusting effect of EU on macrophages was further investigated in vitro. The results confirmed that EU intervention alleviated DSS-induced colitis through methods such as restraining weight loss and colonic shortening and decreasing DAI scores. Microscopic observation manifested that EU maintained the intestinal barrier integrity in line with the mucus barrier and tight junction protection. Furthermore, EU intervention significantly suppressed the activation of TLR4/MyD88/NF-[Formula: see text]B signaling pathways and pro-inflammatory cytokines gene expressions, while enhancing the expressions of anti-inflammatory cytokines. Simultaneously, WB and FCM analyses of the CD86 and CD206 showed that EU could regulate the DSS-induced macrophage polarization imbalance. Overall, our data further elucidated the mechanism of EU's defensive effect on experimental colitis, which is relevant to the protective efficacy of intestinal barriers, inhibition of oxidative stress and excessive inflammatory response, and reprogramming of macrophage polarization. Hence, this study may facilitate a better understanding of the protective action of the EU against UC.


Assuntos
Colite , Eugenol , Animais , Camundongos , Eugenol/farmacologia , Eugenol/uso terapêutico , Fator 88 de Diferenciação Mieloide/genética , Receptor 4 Toll-Like/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal , Colo , Citocinas , Macrófagos , Anti-Inflamatórios , Sulfato de Dextrana , NF-kappa B , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Poult Sci ; 103(4): 103496, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330890

RESUMO

The avian influenza virus is infected through the mucosal route, thus mucosal barrier defense is very important. While the inactivated H9N2 vaccine cannot achieve sufficient mucosal immunity, adjuvants are needed to induce mucosal and systemic immunity to prevent poultry from H9N2 influenza virus infection. Our previous study found that polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles (AMP-ZnONPs) had immune-enhancing effects in vitro. This study aimed to evaluate the mucosal immune responses of oral whole-inactivated H9N2 virus (WIV)+AMP-ZnONPs and its impact on the animal challenge protection, and the corresponding changes of pulmonary metabolomics after the second immunization. The results showed that compared to the WIV, the combined treatment of WIV and AMP-ZnONPs significantly enhanced the HI titer, IgG and specific sIgA levels, the number of goblet cells and intestinal epithelial lymphocytes (iIELs) as well as the expression of J-chain, polymeric immunoglobulin receptor (pIgR), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and transforming growth factor-ß (TGF-ß). In viral attack experiments, WIV combing with AMP-ZnONPs effectively reduced lung damage and viral titers in throat swabs. Interestingly, significant changes of both the IgA intestinal immune network and PPAR pathway could also be found in the WIV+AMP-ZnONPs group compared to the non-infected group. Taken together, these findings suggest that AMP-ZnONPs can serve as a potential mucosal vaccine adjuvant, thereby avoiding adverse stress and corresponding costs caused by vaccine injection.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Vacinas , Animais , Imunidade nas Mucosas , Galinhas , Anticorpos Antivirais , Adjuvantes Imunológicos/farmacologia , Administração Oral , Vacinas de Produtos Inativados , Influenza Aviária/prevenção & controle
4.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396809

RESUMO

H9N2 avian influenza poses a significant public health risk, necessitating effective vaccines for mass immunization. Oral inactivated vaccines offer advantages like the ease of administration, but their efficacy often requires enhancement through mucosal adjuvants. In a previous study, we established a novel complex of polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles (AMP-ZnONPs) and preliminarily demonstrated its immune-enhancing function. This work aimed to evaluate the efficacy of AMP-ZnONPs as adjuvants in an oral H9N2-inactivated vaccine and the vaccine's impact on intestinal mucosal immunity. In this study, mice were orally vaccinated on days 0 and 14 after adapting to the environment. AMP-ZnONPs significantly improved HI titers, the levels of specific IgG, IgG1 and IgG2a in serum and sIgA in intestinal lavage fluid; increased the number of B-1 and B-2 cells and dendritic cell populations; and enhanced the mRNA expression of intestinal homing factors and immune-related cytokines. Interestingly, AMP-ZnONPs were more likely to affect B-1 cells than B-2 cells. AMP-ZnONPs showed mucosal immune enhancement that was comparable to positive control (cholera toxin, CT), but not to the side effect of weight loss caused by CT. Compared to the whole-inactivated H9N2 virus (WIV) group, the WIV + AMP-ZnONP and WIV + CT groups exhibited opposite shifts in gut microbial abundance. AMP-ZnONPs serve as an effective and safe mucosal adjuvant for oral WIV, improving cellular, humoral and mucosal immunity and microbiota in the gastrointestinal tract, avoiding the related undesired effects of CT.


Assuntos
Atractylodes , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Óxido de Zinco , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Imunidade nas Mucosas , Vacinas de Produtos Inativados , Polissacarídeos/farmacologia , Anticorpos Antivirais
5.
Int J Biol Macromol ; 254(Pt 1): 127680, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890744

RESUMO

Oral delivery of chitosan-coated artesunate (CPA) has been proven to be effective at preventing ulcerative colitis (UC) in mice. However, the anti-inflammatory mechanism is not fully understood. STAT6 is a key transcription factor that promotes anti-inflammatory effects by inducing M2 and Th2 dominant phenotypes, therefore we hypothesized STAT6 might play a key role in the process. To prove it, a STAT6 gene knockout macrophage cell line (STAT6-/- RAW264.7, by CRISPR/Cas9 method), and its corresponding Caco-2/RAW264.7 co-culture system combined with the STAT6 inhibitor (AS1517499, AS) in a mouse UC model were established and studied. The results showed that CPA remarkably suppressed the activation of TLR-4/NF-κB pathway and the mRNA levels of proinflammatory cytokines, while increased the IL-10 levels in RAW264.7. This effect of CPA contributed to the protection of the ZO-1 in Caco-2 which was disrupted upon the stimulation to macrophages. Simultaneously, CPA reduced the expression of CD86 but increase the expression of CD206 and p-STAT6 in LPS-stimulated RAW264.7 cells. However, above alterations were not obvious as in STAT6-/- RAW264.7 and its co-culture system, suggesting STAT6 plays a key role. Furthermore, CPA treatment significantly inhibited TLR-4/NF-κB activation, intestinal macrophage M1 polarization and mucosal barrier injury induced by DSS while promoted STAT6 phosphorylation in the UC mouse model, but this effect was also prominently counteracted by AS. Therefore, our data indicate that STAT6 is a major regulator in the balance of M1/M2 polarization, intestinal barrier integrity and then anti-colitis effects of CPA. These findings broaden our understanding of how CPA fights against UC and imply an alternative treatment strategy for UC via this pathway.


Assuntos
Quitosana , Colite Ulcerativa , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Artesunato/farmacologia , Artesunato/metabolismo , Quitosana/farmacologia , NF-kappa B/metabolismo , Células CACO-2 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Macrófagos , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Sulfato de Dextrana/efeitos adversos , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/farmacologia
6.
Cytokine ; 174: 156471, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103301

RESUMO

The mammary gland is an adipose tissue containing not only adipocytes but also epithelial, endothelial, and immune cells. Epithelial cells and macrophages, as the integral components of the immune system, are on the front line of defense against infection. Our preliminary work proved that caffeic acid (CA) can effectively inhibit the inflammatory cascade of bovine mammary epithelial cells (BMEC) induced by lipopolysaccharide (LPS) and maintain cellular integrity and viability. Here, we investigated the therapeutic effect of CA on LPS-induced mice mastitis and explored its regulatory mechanism on macrophage inflammatory response induced by LPS in vitro. Firstly, the mice mastitis model was established by intramammary injection with 10 µg LPS, after which different CA doses (5, 10, 15 mg/kg) were administered. Then, the pathological section, myeloperoxidase (MPO) activity, proinflammatory factors and chemokines releasement, and redox state of mammary tissues were assessed, confirming CA's effectiveness on mice mastitis. In vitro, we validated the therapeutic relevance of CA in relieving LPS-induced RAW264.7 inflammatory and oxidative stress responses. Moreover, we further provided evidence that CA significantly reduced LPS-induced reactive oxygen species (ROS) generation via NADPH oxidase (NOX), which improved the imbalance relationship between nuclear factor kappa-B (NF-κB) and NF-E2 p45-related factor 2 (Nrf2) and led to a marked weakening of M1 polarization. The NOX-ROS signal inhibited by CA weakened the oxidative burst and neutrophil chemotaxis of macrophages, thus alleviating the immune cascade in mammary gland tissue and reducing the LPS-induced inflammatory damage. Collectively, CA would be a potential candidate or antibacterial synergist for curbing mastitis.


Assuntos
Lipopolissacarídeos , Mastite , Humanos , Feminino , Animais , Bovinos , Camundongos , Lipopolissacarídeos/efeitos adversos , Espécies Reativas de Oxigênio , NADPH Oxidases , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , NF-kappa B , Modelos Animais de Doenças , Macrófagos , Células Epiteliais
7.
Vet Parasitol ; 324: 110057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918037

RESUMO

In-feed prophylactic chemotherapy is widely considered the mainstay of avian coccidiosis control, while serious drug resistance strictly restricts its application. Confronted with the urgent need for an alternative strategy, a traditional Chinese medicine formula (TCMF) was developed. Meanwhile, its potential to iron out complicated clinical coccidiosis was scrutinized in vivo with a field-isolated multi-drug resistant Eimeria tenella (E. tenella) isolate. Birds were inoculated with 5 × 104 sporulated oocysts and administrated with TCMF supplementation in water from 72 h post-infection to the end of the experiment, diclazuril (DIC) was set as a positive control. As a result, TCMF intervention reduced oocyst shedding, cecal lesion and mortality, and enhanced body weight gain. According to the above, anticoccidial index (ACI) was calculated and TCMF exerted a moderate anticoccidial activity. Besides, macroscopic, histopathological, and ultrastructural observations revealed the safeguarding effects of TCMF on E. tenella-induced cecal injury. Following, TCMF treatment presented an obvious inhibition effect on E. tenella caused oxidative stress and inflammatory response. Moreover, TCMF supplementation restored the cecal flora abundance and diversity, reduced the colonization of harmful bacteria, and increased the probiotics abundance. In conclusion, TCMF exhibited a moderate anticoccidial effect along with alleviating E. tenella-induced cecal injury, redox imbalance, and inflammatory response which may be associated with the microflora modulatory effect.


Assuntos
Anti-Infecciosos , Coccidiose , Coccidiostáticos , Eimeria tenella , Doenças das Aves Domésticas , Animais , Galinhas , Coccidiose/tratamento farmacológico , Coccidiose/prevenção & controle , Coccidiose/veterinária , Coccidiostáticos/farmacologia , Coccidiostáticos/uso terapêutico , Aumento de Peso , Anti-Infecciosos/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/patologia
8.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401131

RESUMO

AIMS: We determined the synergistic effects of tea tree essential oil nano-emulsion (nanoTTO) and antibiotics against multidrug-resistant (MDR) bacteria in vitro and in vivo. Then, the underlying mechanism of action of nanoTTO was investigated. METHODS AND RESULTS: Minimum inhibitory concentrations and fractional inhibitory concentration index (FICI) were determined. The transepithelial electrical resistance (TEER) and the expression of tight junction (TJ) protein of IPEC-J2 cells were measured to determine the in vitro efficacy of nanoTTO in combination with antibiotics. A mouse intestinal infection model evaluated the in vivo synergistic efficacy. Proteome, adhesion assays, quantitative real-time PCR, and scanning electron microscopy were used to explore the underlying mechanisms. Results showed that nanoTTO was synergistic (FICI ≤ 0.5) or partial synergistic (0.5 < FICI < 1) with antibiotics against MDR Gram-positive and Gram-negative bacteria strains. Moreover, combinations increased the TEER values and the TJ protein expression of IPEC-J2 cells infected with MDR Escherichia coli. The in vivo study showed that the combination of nanoTTO and amoxicillin improved the relative weight gain and maintained the structural integrity of intestinal barriers. Proteome showed that type 1 fimbriae d-mannose specific adhesin of E. coli was downregulated by nanoTTO. Then, nanoTTO reduced bacterial adhesion and invasion and inhibited the mRNA expression of fimC, fimG, and fliC, and disrupted bacterial membranes.


Assuntos
Antibacterianos , Óleo de Melaleuca , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Óleo de Melaleuca/farmacologia , Escherichia coli , Proteoma , Sinergismo Farmacológico , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
9.
Biomaterials ; 299: 122145, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172536

RESUMO

Cancer is a complex pathological phenomenon that needs to be treated from different aspects. Herein, we developed a size/charge dually transformable nanoplatform (PDR NP) with multiple therapeutic and immunostimulatory properties to effectively treat advanced cancers. The PDR NPs exhibit three different therapeutic modalities (chemotherapy, phototherapy and immunotherapy) that can be used to effectively treat primary and distant tumors, and reduce recurrent tumors; the immunotherapy is simultaneously activated by three major pathways, including toll-like receptor, stimulator of interferon genes and immunogenic cell death, effectively suppresses the tumor development in combination with an immune checkpoint inhibitor. In addition, PDR NPs show size and charge responsive transformability in the tumor microenvironment, which overcomes various biological barriers and efficiently delivers the payloads into tumor cells. Taking these unique characteristics together, PDR NPs effectively ablate primary tumors, activate strong anti-tumor immunity to suppress distant tumors and reduce tumor recurrence in bladder tumor-bearing mice. Our versatile nanoplatform shows great potential for multimodal treatments against metastatic cancers.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico , Recidiva Local de Neoplasia , Neoplasias/terapia , Fototerapia , Imunoterapia , Microambiente Tumoral
10.
MedComm (2020) ; 4(3): e255, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37090118

RESUMO

Regulated pyroptosis is critical for pathogen elimination by inducing infected cell rupture and pro-inflammatory cytokines secretion, while overwhelmed pyroptosis contributes to organ dysfunction and pathological inflammatory response. Caffeic acid (CA) and ferulic acid (FA) are both well-known antioxidant and anti-inflammatory phenolic acids, which resemble in chemical structure. Here we found that CA, but not FA, protects macrophages from both Nigericin-induced canonical and cytosolic lipopolysaccharide (LPS)-induced non-canonical pyroptosis and alleviates LPS-induced mice sepsis. It significantly improved the survival of pyroptotic cells and LPS-challenged mice and blocked proinflammatory cytokine secretion. The anti-pyroptotic effect of CA is independent of its regulations in cellular lipid peroxidation, mitochondrial function, or pyroptosis-associated gene transcription. Instead, CA arrests pyroptosis by directly associating with gasdermin D (GSDMD) and blocking its processing, resulting in reduced N-GSDMD pore construction and less cellular content release. In LPS-induced septic mice, CA inhibits GSDMD activation in peritoneal macrophages and reduces the serum levels of interleukin-1ß and tumor necrosis factor-α as the known pyroptosis inhibitors, disulfiram and dimethyl fumarate. Collectively, these findings suggest that CA inhibits pyroptosis by targeting GSDMD and is a potential candidate for curbing the pyroptosis-associated disease.

11.
Microb Pathog ; 179: 106113, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062493

RESUMO

BACKGROUND: Salmonella enterica serovar Typhimurium (ST) mainly exists in poultry and poultry related products, which are common sources of human salmonellosis. So, ST is an important zoonotic pathogen that threatens public health and safety. Eugenol has been noted for its antibacterial and anti-inflammatory properties, and it is expected to develop into an antibacterial therapy in vivo. METHODS: Herein, the effects of eugenol against ST infection in terms of intestinal flora, cecal tight junction, and cecal inflammation in broilers was evaluated in this study. RESULTS: The results showed that oral eugenol pretreatment obviously relieved the histopathological changes and ultrastructural injury of cecum caused by ST infection. Further analysis found that eugenol lessened the number of ST in the cecum, restrained Proteobacteria and Ruminococcus, and kept the ratio of Firmicutes to Bacteroidetes (F/B), improved the relative abundance of Alistipes compared to the infection control. Moreover, eugenol sustained the expression of ZO-1, claudin-1, and occluding tight junction proteins, reduced the mRNA levels of myeloid differentiation factor 88 (MyD88), toll-like receptor-4 (TLR4) and inducible nitric oxide synthesis (iNOS), suppressed the phosphorylation of p65 and IκBα in the NF-κB signaling pathway, as well as the mRNA levels of TNF-α, IL-1ß, IL-2, and IL-18 in the cecum tissue. CONCLUSION: Taken together, eugenol could protect broilers against ST infection via maintaining intestinal flora, tight junctions involved in mucosal barrier function, then accordingly limiting the excessive inflammation, finally contributed to improving relative weight gains and survival rates of broilers.


Assuntos
Salmonella typhimurium , Junções Íntimas , Animais , Humanos , Salmonella typhimurium/genética , Junções Íntimas/metabolismo , Eugenol/farmacologia , Galinhas/microbiologia , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Ceco/microbiologia , RNA Mensageiro/metabolismo
12.
Poult Sci ; 102(1): 102238, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36368171

RESUMO

The purpose of this study was to formulate tee tree oil nanoliposomes (TTONL) and evaluate its characterization and antibacterial activity. TTONL was prepared by thin film hydration and sonication technique, and the preparation conditions were optimized by Box-behnken response surface method. The characterization (morphology, size, zeta potential, and stability) and antibacterial activity of TTONL against Escherichia coli (E. coli) in vitro and in vivo were evaluated. The optimal preparation conditions for TTONL: lecithin to cholesterol mass ratio of 3.7:1, TTO concentration of 0.5%, and pH of the hydration medium of 7.4, which resulted in a TTONL encapsulation rate of 80.31 ± 0.56%. TTONL was nearly spherical in shape and uniform in size, and the average particle size was 227.8 ± 25.3 nm with negative charge. The specific disappearance of the TTO peak in the infrared spectrum suggested the successful preparation of TTONL, which showed high stability at 4°C within 35 d. The result of MIC test found that the nanoliposomes improved antibacterial activity of TTO against various E. coli strains. TTONL exposure in vitro caused different degrees of structural damage to the E. coli. TTONL by oral administration alleviated the clinical symptoms and intestinal lesion of chickens induced with E. coli challenge. Furthermore, TTONL treatment remarkably lowered the mRNA expression of NLRP3 and NF-κB (p65) in the duodenum and cecum of E. coli-infected chickens. In conclusion, the prepared TTONL had good stability and slow-release property with dose-dependent inhibition and killing effects on different strains of E. coli, and exerted a preventive role against chicken colibacillosis through inhibition.


Assuntos
Óleo de Melaleuca , Animais , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Escherichia coli , Galinhas , Antibacterianos/farmacologia , Antibacterianos/química
13.
Front Nutr ; 9: 1055791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438754

RESUMO

The characteristic of ulcerative colitis (UC) is extensive colonic mucosal inflammation. Moringa oleifera (M. oleifera) is a medicine food homology plant, and the polysaccharide from M. oleifera leaves (MOLP) exhibits antioxidant and anti-inflammatory activity. The aim of this study to investigate the potential effect of MOLP on UC in a mouse model as well as the underlying mechanism. Dextran sulfate sodium (DSS) 4% in drinking water was given for 7 days to mice with UC, at the same time, MOLP (25, 50, and 100 mg/kg/day) was intragastric administered once daily during the experiment. Structural analysis revealed that MOLP had an average molecular weight (Mw) of 182,989 kDa and consisted of fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galactose uronic acid, glucuronic acid, glucose uronic acid and mannose uronic acid, with a percentage ratio of 1.64, 18.81, 12.04, 25.90, 17.57, 12.01, 3.51, 5.28, 0.55, 1.27, and 1.43%, respectively. In addition, the features of MOLP were identified by Fourier-transform infrared (FT-IR) and spectra, X-ray diffraction (XRD). The results showed that MOLP exhibited protective efficacy against UC by alleviating colonic pathological alterations, decreasing goblet cells, crypt destruction, and infiltration of inflammatory cells caused by DSS. Furthermore, MOLP notably repressed the loss of zonula occludens-1 (ZO-1) and occludin proteins in mucosal layer, as well as up-regulating the mRNA expression of interleukin-10 (IL-10) and peroxisome proliferator-activated receptor-γ (PPAR-γ), whereas down-regulating the activation of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor-kappa B (NF-κB) signaling pathway and the production of pro-inflammatory cytokines. Therefore, these results will help understand the protective action procedure of MOLP against UC, thereby providing significance for the development of MOLP.

14.
Microb Pathog ; 173(Pt A): 105824, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36243382

RESUMO

The continuous emergence of multidrug-resistant (MDR) bacteria has posed an increasingly serious public health threat which urges people to develop some alternatives. Gallic acid (GA) is a natural ingredient in many traditional Chinese medicines, which has many biological activities, such as antibacterial, and antiseptic. Here, clinical isolates of MDR Escherichia coli (E. coli) were used to evaluate the antibacterial effect of GA and the underlying mechanism. The results revealed that GA exerted bactericidal activity and inhibited the formation of bacterial biofilm. GA enhanced the activities of ceftiofur sodium or tetracycline against E. coli, and facilitated antibiotic accumulation in bacteria. Further analysis of morphological alterations and efflux pump gene expressions confirmed that GA damaged outer and inner membranes, and suppressed the mRNA expressions of acrA, acrB, tolC, acrD and acrF involved in membrane permeability. In addition, GA showed protective effects against bacterial infection and improved the survival rates of Galleria mellonella and BALB/c mice. These data highlight a better understanding of GA against bacteria and provide an alternative strategy for MDR bacterial infection.


Assuntos
Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli , Escherichia coli , Ácido Gálico , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Gálico/farmacologia , Lipoproteínas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
15.
Front Nutr ; 9: 992502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185684

RESUMO

Atractylodes macrocephala Koidz (A. macrocephala) has been used both as a traditional medicine and functional food for hundreds of years in Asia. And it has a variety of biological activities, such as enhancing the ability of immunity and modulating effect on gastrointestinal motility. In this study, a water-soluble polysaccharide with molecular weight of 2.743 × 103 Da was isolated from the root of A. macrocephala. Polysaccharide from A. macrocephala (AMP) consisted of arabinose, galactose, glucose, xylose, mannose, ribose, galactose uronic acid, glucose uronic acid, with a percentage ratio of 21.86, 12.28, 34.19, 0.43, 0.92, 0.85, 28.79, and 0.67%, respectively. Zinc plays an important role in immune system. Therefore, we supposed that AMP binding with zinc oxide (ZnO) nanoparticles (AMP-ZnONPs) might be an effective immunostimulator. AMP-ZnONPs was prepared by Borch reduction, and its structural features were characterized by Scanning Electron Microscope (SEM), Transmission electron microscope (TEM), TEM-energy dispersive spectroscopy mapping (TEM-EDS mapping), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS), X-ray diffraction (XRD), particle size and zeta-potential distribution analysis. Then, its immunostimulatory activity and the underlying mechanism were evaluated using RAW264.7 cells. The results showed that AMP-ZnONPs remarkably promoted cell proliferation, enhanced phagocytosis, the release of nitric oxide (NO), cytokines (IL-6 and IL-1ß) and the expression of co-stimulatory molecules (CD80, CD86 and MHCII). Moreover, AMP-ZnONPs could promote the expression of Toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (MyD88), TNF receptor associated factor 6 (TRAF6), phospho-IκBα (P-IκBα) and phospho-p65 (P-p65), and TLR4 inhibitor (TAK242) inhibited the expression of these proteins induced by AMP-ZnONPs. Therefore, AMP-ZnONPs activated macrophages by TLR4/MyD88/NF-κB signaling pathway, indicating that AMP-ZnONPs could act as a potential immunostimulator in medicine and functional food.

16.
Colloids Surf B Biointerfaces ; 219: 112824, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108369

RESUMO

Artesunate (ARS) has been shown to have a protective effect on ulcerative colitis (UC) in mice. However, its lack of targeting and short half-life severely hamper its efficacy. In this study, polylactic acid-glycolic acid copolymer (PLGA) and chitosan (CS) double emulsification solvent volatilisation method was used to prepare a stable nanoemulsion loaded with ARS (CPA). The in vitro drug release profile was detected using dialysis and the potential protective effect was evaluated in an experimental ulcerative colitis (UC) model induced by oral administration of dextran sulphate sodium (DSS). The results suggested that the mean droplet diameter of CPA nanoemulsion is 409.9 ± 9.21 nm, the polydispersity index is 0.17 ± 0.01 and the zeta potential is 40.07 ± 1.65 mV. The cumulative release curve showed the ARS was mainly released at pH 7.4, which is similar to the colonic environment. Oral administration of CPA effectively relieved DSS-induced clinical symptoms by lowering the body weight loss, disease activity index (DAI) score and impressively maintained tight junction protein expression in colon tissue when compared to the blank nanoemulsion control. Meanwhile, CPA remarkably suppressed TLR4/NF-κB pathway activation and mRNA levels of proinflammatory cytokines (IL-1ß, IL-6, and TNF-α) while enhanced levels of IL-10 and CD206. In addition, the effect of CPA was slightly better than that of injecting ARS. Therefore, this study demonstrates a convenient drug delivery system for oral administration of ARS that potentially helps to target colonic tissue and alleviate UC.

17.
Nano Lett ; 22(17): 6866-6876, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35926215

RESUMO

Immune checkpoint blockade (ICB) therapy has revolutionized clinical oncology. However, the efficacy of ICB therapy is limited by the ineffective infiltration of T effector (Teff) cells to tumors and the immunosuppressive tumor microenvironment (TME). Here, we report a programmable tumor cells/Teff cells bispecific nano-immunoengager (NIE) that can circumvent these limitations to improve ICB therapy. The peptidic nanoparticles (NIE-NPs) bind tumor cell surface α3ß1 integrin and undergo in situ transformation into nanofibrillar network nanofibers (NIE-NFs). The prolonged retained nanofibrillar network at the TME captures Teff cells via the activatable α4ß1 integrin ligand and allows sustained release of resiquimod for immunomodulation. This bispecific NIE eliminates syngeneic 4T1 breast cancer and Lewis lung cancer models in mice, when given together with anti-PD-1 antibody. The in vivo structural transformation-based supramolecular bispecific NIE represents an innovative class of programmable receptor-mediated targeted immunotherapeutics to greatly enhance ICB therapy against cancers.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Imunomodulação , Integrinas , Camundongos , Neoplasias/tratamento farmacológico , Linfócitos T
18.
ACS Infect Dis ; 8(8): 1618-1626, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35854664

RESUMO

Extensive efforts are underway to overcome the rising prevalence of antibiotic resistance. Combination therapy may be a potential method to treat multidrug-resistant (MDR) bacterial infections. In this study, tea tree essential oil (TTO) nanoemulsion (nanoTTO) was used in combination with antibiotics to kill microbes. Results showed that nanoTTO enhanced the activities of multiple antibiotics against MDR Escherichia coli (E. coli), and its antimicrobial activity was not changed against bacteria that were cultured in the presence of nanoTTO for 30 passages. Further studies to visualize and quantify intracellular antibiotics concentrations identified that nanoTTO increased the drug accumulation in MDR E. coli by disrupting outer and inner membranes and inhibiting the AcrAB-TolC efflux pump involved in membrane permeability. In addition, nanoTTO was effective in enhancing antibiotic efficacy in the Galleria mellonella infection model and mouse peritonitis model, suggesting a potential strategy against MDR bacterial infections.


Assuntos
Infecções Bacterianas , Óleo de Melaleuca , Animais , Antibacterianos/farmacologia , Escherichia coli , Camundongos , Testes de Sensibilidade Microbiana , Óleo de Melaleuca/farmacologia
19.
Vet Parasitol ; 305: 109719, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35597690

RESUMO

Diclazuril (DIC) is widely used in the poultry industry to control coccidiosis. However, drug resistance makes it less effective, and the underlying mechanism remains unclear. One DIC-resistant E. tenella (RE) isolate and one sensitive E. tenella (SE) isolate were used to compare the differences in their endogenous development, pathogenicity, invasion-related gene expression and apoptotic characteristics. Chickens were allocated into four groups to receive RE or SE strain and their corresponding DIC treatment or not. Caeca tissues were sampled at 96 h, 120 h and 144 h post-infection (PI) for pathological analysis. Meanwhile, second-generation merozoites (Mz2) were separated at 120 h PI to detect alterations in mitochondrial membrane potential (MMP), apoptotic rate and caspase-3 activity and mRNA expression of protein phosphatase 5 (PP5), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), actin depolymerizing factor (ADF) and microneme proteins (MICs). Haematoxylin and eosin staining revealed that DIC treatment strictly blocked the development of the SE strain but slightly affected the RE strain. Meanwhile, the number of SE Mz2 and their MMP decreased at the same time the apoptotic rate increased after DIC treatment. Real-time quantitative PCR and caspase-3 activity studies demonstrated that Mz2 from the RE strain had higher mRNA expression of ADF and MICs along with no significant changes in GAPDH and caspase-3 activity under DIC pressure compared to its control; in contrast, the mRNA expression of ADF, MICs and PP5 was markedly suppressed in Mz2 from SE with upregulated caspase-3 activity and GAPDH transcription. In addition, the mRNA expression of GAPDH and PP5 in Mz2 from RE was remarkably higher than that of SE. Taken together, the higher mRNA expression of invasion-related genes and almost unaffected endogenous development provide a better understanding of coccidian resistance to DIC.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Caspase 3/genética , Galinhas/genética , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Eimeria tenella/genética , Gliceraldeído-3-Fosfato Desidrogenases , Nitrilas , Doenças das Aves Domésticas/tratamento farmacológico , RNA Mensageiro , Triazinas
20.
Poult Sci ; 101(5): 101801, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35338975

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) continues to be a serious concern to the poultry industry as a bacterial foodborne zoonosis, which generally results in intestinal inflammation and barrier dysfunction or even death. Eugenol is a phenolic compound with various pharmacological activities involved antioxidant, anti-inflammatory, and antibacterial effects, which is expected to be an effective nonantibiotic therapy. The purpose of this study was to explore the protective effects of eugenol in the cellular and broiler models of S. Typhimurium infection and the possible underlying mechanisms. The results of animal infection showed that eugenol treatments enhanced the relative weight gains and survival rates of broilers with a reduction of the organ bacterial load and intestinal ultrastructural injury. Moreover, eugenol significantly inhibited the mRNA levels of myeloid differentiation factor 88 (MyD88) and toll-like receptor-4 (TLR4), then declined the phosphorylation of p65 and IκBα of NF-κB pathway and the expressions of inflammatory factors (TNF-α, IL-1ß, IL-2, and IL-18) in duodenum tissues, while maintained the expressions of intestinal tight junction proteins (ZO-1, claudin-1, occludin). Further experiments in vitro revealed that eugenol markedly inhibited the adhesion and invasion of S. Typhimurium to RAW264.7 or IEC-6 cells, then reduce bacterial multiplication in IEC-6 or DF-1 cells. In conclusion, eugenol could defend broilers from S. Typhimurium infection by stabilizing the intestinal mucosal barrier and relieving inflammatory response, as well as inhibiting bacterial adhesion and invasion to cells.


Assuntos
Galinhas , Eugenol , Animais , Galinhas/metabolismo , Eugenol/farmacologia , Mucosa Intestinal/metabolismo , NF-kappa B/metabolismo , Salmonella typhimurium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA