Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37630125

RESUMO

We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone's absorption spectrum. Complete overlap is essential to effectively limit the optical penetration depth, which is required to achieve high out-of-plane resolution. We demonstrate the high resolution in practice by 3D printing 15 µm square pillars in a microfluidic chamber, where the pillars are separated by 7.7 µm and are printed with 5 µm layers. Furthermore, we show reliable membrane valves and pumps using the biocompatible resin. Valves are tested to 1,000,000 actuations with no observable degradation in performance. Finally, we create a concentration gradient generation (CG) component and utilize it in two device designs for cell chemotaxis studies. The first design relies on an external dual syringe pump to generate source and sink flows to supply the CG channel, while the second is a complete integrated device incorporating on-chip pumps, valves, and reservoirs. Both device types are seeded with adherent cells that are subjected to a chemoattractant CG, and both show clear evidence of chemotactic cellular migration. Moreover, the integrated device demonstrates cellular migration comparable to the external syringe pump device. This demonstration illustrates the effectiveness of our integrated chemotactic assay approach and high-resolution biocompatible resin 3D printing fabrication process. In addition, our 3D printing process has been tuned for rapid fabrication, as printing times for the two device designs are, respectively, 8 and 15 min.

2.
Mikrochim Acta ; 189(5): 204, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484354

RESUMO

A 3D printed, automated, pressure-driven injection microfluidic system for microchip electrophoresis (µCE) of preterm birth (PTB)-related peptides and proteins has been developed. Functional microvalves were formed, either with a membrane thickness of 5 µm and a layer exposure time of 450 ms or with a membrane thickness of 10 µm and layer exposure times of 300-350 ms. These valves allowed for control of fluid flow in device microchannels during sample injection for µCE separation. Device design and µCE conditions using fluorescently labeled amino acids were optimized. A sample injection time of 0.5 s and a separation voltage of 450 V (460 V/cm) yielded the best separation efficiency and resolution. We demonstrated the first µCE separation with pressure-driven injection in a 3D printed microfluidic device using fluorescently labeled PTB biomarkers and 532 nm laser excitation. Detection limits for two PTB biomarkers, peptide 1 and peptide 2, for an injection time of 1.5 s were 400 pM and 15 nM, respectively, and the linear detection range for peptide 2 was 50-400 nM. This 3D printed microfluidic system holds promise for future integration of on-chip sample preparation processes with µCE, offering promising possibilities for PTB risk assessment.


Assuntos
Eletroforese em Microchip , Nascimento Prematuro , Biomarcadores/análise , Eletroforese em Microchip/métodos , Feminino , Humanos , Recém-Nascido , Dispositivos Lab-On-A-Chip , Peptídeos , Gravidez , Nascimento Prematuro/diagnóstico , Impressão Tridimensional
3.
Opt Lett ; 46(18): 4650-4653, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525073

RESUMO

We demonstrate a method of tuning the resonant frequencies of silicon microring resonators using a 3D-printed microfluidic chip overlaid directly on the photonic circuit with zero energy consumption following the initial tuning. Aqueous solutions with different concentrations of NaCl are used in experimentation. A shift of a full free spectral range is observed at a concentration of 10% NaCl. On a 60 µm microring resonator, this equals a resonant wavelength shift of 1.514 nm when the index of the cladding changes by 0.017 refractive index units (RIUs), or at a rate of 89.05 nm/RIU.

4.
OSA Contin ; 4(7): 2075-2081, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406286

RESUMO

We demonstrate a novel method to automate tuning of microring resonators using 3D-printed microfluidic control capable of resonance wavelength shifts of 4 nm. We use a custom 3D-printer that can fabricate microfluidic devices with sub-10 µm features and that perform automatic pumping, mixing, and dilution operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...