Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(19): 10115-10128, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703121

RESUMO

This study investigates the utilization of the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a catalytic material for the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). PEDOT films doped with different counterions were electrodeposited on graphite foil. In particular, the mobile anion perchlorate and the polymeric ionomers polystyrenesulfonate, Nafion, and Aquivion were used. The electrocatalytic properties of PEDOT films were evaluated toward the TEMPO redox mediator in the absence and the presence of HMF as a substrate for oxidation reactions. The electrocatalytic HMF oxidation was confirmed to occur at PEDOT electrodes, and it was also found that the chemical nature of PEDOT counterions controls the electrocatalytic conversion of HMF by modulating the kinetics of the electrochemical generation of the oxoammonium cation TEMPO(+). Potentiostatic electrolysis experiments showed that both the reference graphite electrode and PEDOT substrates were able to convert HMF to FDCA with an 80% faradaic efficiency (FE) and a >90% yield (FDCA), but, compared to graphite, the complete conversion of HMF to FDCA required a ca. 30% shorter time when using PEDOT electrodes doped with perchlorate or Aquivion, thanks to their ability to sustain a higher current density in the initial phase of the electrolysis. In addition, while all PEDOT films were chemically stable under the electrochemical conditions herein described, only PEDOT films doped with Aquivion were also mechanically robust and stable against delamination. Thus, the new PEDOT/Aquivion composite may represent the best choice for the implementation of PEDOT-based electrodes in TEMPO-mediated electrocatalytic applications.

2.
ACS Appl Mater Interfaces ; 16(21): 27209-27223, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747220

RESUMO

In view of developing photoelectrosynthetic cells which are able to store solar energy in chemical bonds, water splitting is usually the reaction of choice when targeting hydrogen production. However, alternative approaches can be considered, aimed at substituting the anodic reaction of water oxidation with more commercially capitalizable oxidations. Among them, the production of bromine from bromide ions was investigated long back in the 1980s by Texas Instruments. Herein we present optimized perylene-diimide (PDI)-sensitized antimony-doped tin oxide (ATO) photoanodes enabling the photoinduced HBr splitting with >4 mA/cm2 photocurrent densities under 0.1 W/cm2 AM1.5G illumination and 91 ± 3% faradaic efficiencies for bromine production. These remarkable results, among the best currently reported for the photoelectrochemical Br- oxidation by dye sensitized photoanodes, are strongly related to the occupancy extent of ATO's intragap (IG) states, generated upon Sb-doping, as demonstrated by comparing their performances with PDI-sensitized analogues on both undoped SnO2- and TiO2-passivated ATO scaffolds by means of (spectro)electrochemistry and electrochemical impedance spectroscopy. The architecture of the ATO-PDI photoanodic assembly was further modified via the introduction of a molecular iridium-based water oxidation catalyst, thus proving the versatility of the proposed hybrid interfaces as photoanodic platforms for photoinduced oxidations in PEC devices.

3.
ACS Omega ; 7(33): 29181-29194, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033653

RESUMO

PEDOT-based counter electrodes for dye-sensitized solar cells (DSSCs) are generally prepared by electrodeposition, which produces polymer films endowed with the best electrocatalytic properties. This translates in fast regeneration of the redox mediator, which allows the solar cell to sustain efficient photoconversion. The sustainable fabrication of DSSCs must consider the scaling up of the entire process, and when possible, it should avoid the use of large amounts of hazardous and/or inflammable chemicals, such as organic solvents for instance. This is why electrodeposition of PEDOT-based counter electrodes should preferably be carried out in aqueous media. In this study, PEDOT/Nafion was electrodeposited on FTO and comparatively evaluated as a catalytic material in DSSCs based on either cobalt or copper electrolytes. Our results show that the electrochemical response of PEDOT/Nafion toward Co(II/III-) or Cu(I/II)-based redox shuttles was comparable to that of PEDOT/ClO4 and significantly superior to that of PEDOT/PSS. In addition, when tested for adhesion, PEDOT/Nafion films were more stable for delamination if compared to PEDOT/ClO4, a feature that may prove beneficial in view of the long-term stability of solar devices.

4.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566275

RESUMO

New composite photocatalysts have been obtained by chemical bath deposition of CdS on top of either nanostructured crystalline ZrO2 or TiO2 films previously deposited on conductive glass FTO. Their morphological, photoelectrochemical and photochemical properties have been investigated and compared. Time resolved spectroscopic, techniques show that in FTO/TiO2/CdS films the radiative recombination of charges, separated by visible illumination of CdS, is faster than in FTO/ZrO2/CdS, evidencing that carrier dynamics in the two systems is different. Photoelectrochemical investigation evidence a suppression of electron collection in ZrO2/CdS network, whereas electron injection from CdS to TiO2 is very efficient since trap states of TiO2 act as a reservoir for long lived electrons storage. This ability of FTO/TiO2/CdS films is used in the reductive cleavage of N=N bonds of some azo-dyes by visible light irradiation, with formation and accumulation of reduced aminic intermediates, identified by ESI-MS analysis. Needed protons are provided by sodium formate, a good hole scavenger that leaves no residue upon oxidation. FTO/TiO2/CdS has an approximately 100 meV driving force larger than FTO/ZrO2/CdS under illumination for azo-dye reduction and it is always about 10% more active than the seconds. The films showed very high stability and recyclability, ease of handling and recovering.


Assuntos
Compostos Azo , Titânio , Catálise , Corantes , Luz , Titânio/química
5.
Dalton Trans ; 50(2): 696-704, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33346259

RESUMO

The design of active photocathodes for the hydrogen evolution reaction (HER) is a crucial step in the development of dye-sensitized photoelectrochemical cells (DS-PECs) aimed at solar-assisted water splitting. In the present work, we report on the use of orange CdTexS1-x quantum dots (QDs) with an average diameter of ca. 3.5 nm, featuring different capping agents (MAA, MPA, and MSA) for the sensitization of electrodes based on nanostructured NiO. Photoelectrochemical characterization of the resulting NiO|QDs electrodes in the presence of [CoIII(NH3)5Cl]Cl2 as an irreversible electron acceptor elects MAA-capped QDs as the most active sample to achieve substantial photocurrent densities thanks to both improved surface coverage and injection ability. Functionalization of the NiO|QDs electrodes with either heterogeneous Pt or the molecular nickel bis(diphosphine) complex (1) as the hydrogen evolving catalysts (HECs) yields active photocathodes capable of promoting hydrogen evolution upon photoirradiation (maximum photocurrent densities of -16(±2) and -20(±1) µA·cm-2 for Pt and 1 HECs, respectively, at 0 V vs. NHE, 70-80% faradaic efficiency, maximum IPCE of ca. 0.2%). The photoelectrochemical activity is limited by the small surface concentration of the QD sensitizers on the NiO surface and the competitive light absorption by the NiO material which suggests that the match between dye adsorption and the available surface area is critical to achieving efficient hydrogen evolution by thiol-capped QDs.

6.
Sci Rep ; 10(1): 1176, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980734

RESUMO

SnO2 nanoparticles have been synthesized and used as electron transport material (ETM) in dye sensitized solar cells (DSSCs), featuring two peripherally substituted push-pull zinc phthalocyanines (ZnPcs) bearing electron donating diphenylamine substituents and carboxylic acid anchoring groups as light harvesters. These complexes were designed on the base of previous computational studies suggesting that the integration of secondary amines as donor groups in the structure of unsymmetrical ZnPcs might enhance photovoltaics performances of DSSCs. In the case of TiO2-based devices, this hypothesis has been recently questioned by experimental results. Herein we show that the same holds for SnO2, despite the optimal matching of the optoelectronic characteristics of the synthesized nanoparticles and diphenylamino-substituted ZnPcs, thus confirming that other parameters heavily affect the solar cells performances and should be carefully taken into account when designing materials for photovoltaic applications.

7.
Chem Commun (Camb) ; 56(4): 543-546, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31829327

RESUMO

Recombination and regeneration dynamics in Fe-NHC-sensitized DSSCs revealed incomplete injection and the detrimental effect of photoinjected electron recapture by the I3-form of the redox electrolyte on performance. Importantly, the use of additives in the electrolyte allowed the best efficiency ever recorded for an iron-based DSSC to be reached.

8.
ACS Appl Mater Interfaces ; 11(51): 48002-48012, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31797662

RESUMO

Water oxidation represents the anodic reaction in most of the photoelectrosynthetic setups for artificial photosynthesis developed so far. The efficiency of the overall process strongly depends on the joint exploitation of good absorber domains and interfaces with minimized recombination pathways. To this end, we report on the effective coupling of thin-layer hematite with amorphous porous nickel-iron oxide catalysts prepared via pulsed laser deposition. The rational design of such composite photoelectrodes leads to the formation of a functional adaptive junction, with enhanced photoanodic properties with respect to bare hematite. Electrochemical impedance spectroscopy has contributed to shed light on the mechanisms of photocurrent generation, confirming the reduction of recombination pathways as the main contributor to the improved performances of the functionalized photoelectrodes. Our results highlight the importance of the amorphous catalysts' morphology, as dense and electrolyte impermeable layers hinder the pivotal charge compensation processes at the interface. The direct comparison with all-iron and all-nickel catalytic counterparts further confirms that control over the kinetics of both hole transfer and charge recombination, enabled by the adaptive junction, is key for the optimal operation of this kind of semiconductor/catalyst interfaces.

9.
Sci Rep ; 7(1): 15675, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142212

RESUMO

Computational studies have suggested that the integration of secondary amine as donor groups in the structure of unsymmetrical zinc phthalocyanine (ZnPc) should have positive effects on photovoltaic performance, once the molecule is integrated as light harvester in dye sensitized solar cells (DSSCs). Aiming at obtaining experimental confirmation, we synthesized a peripherally substituted push-pull ZnPc bearing three electron donating diphenylamine substituents and a carboxylic acid anchoring group and integrated it as sensitizer in TiO2-based DSSCs. Detailed functional characterization of solar energy converting devices resulted in ruling out the original hypothesis. The causes of this discrepancy have been highlighted, leading to a better understanding of the conditions for an effective design of push-pull diarylamino substituted ZnPcs for DSSCs.

10.
Molecules ; 21(7)2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27447604

RESUMO

Doping hematite with different elements is a common strategy to improve the electrocatalytic activity towards the water oxidation reaction, although the exact effect of these external agents is not yet clearly understood. Using a feasible electrophoretic procedure, we prepared modified hematite films by introducing in the deposition solution Ti(IV) butoxide. Photoelectrochemical performances of all the modified electrodes were superior to the unmodified one, with a 4-fold increase in the photocurrent at 0.65 V vs. SCE in 0.1 M NaOH (pH 13.3) for the 5% Ti-modified electrode, which was the best performing electrode. Subsequent functionalization with an iron-based catalyst led, at the same potential, to a photocurrent of ca. 1.5 mA·cm(-2), one of the highest achieved with materials based on solution processing in the absence of precious elements. AFM, XPS, TEM and XANES analyses revealed the formation of different Ti(IV) oxide phases on the hematite surface, that can reduce surface state recombination and enhance hole injection through local surface field effects, as confirmed by electrochemical impedance analysis.


Assuntos
Eletroquímica , Compostos Férricos/química , Processos Fotoquímicos , Fotoquímica , Titânio/química , Impedância Elétrica , Eletrodos , Microscopia de Força Atômica , Análise Espectral/métodos
11.
ACS Appl Mater Interfaces ; 8(23): 14604-12, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27227738

RESUMO

The electrochemical properties of both pristine single walled carbon nanohorns (SWCNHS) and their chemically oxidized form (ox-SWCNHS) spray coated onto fluorine doped SnO2 (FTO) were investigated in the framework of the fabrication of cobalt based transparent dye sensitized solar cells (DSSCs). These new nanocarbon substrates, evaluated in conjunction with the Co(bpy)3(2+/3+) (bpy = 2,2'-bipyridine) redox mediator, are endowed with excellent electrocatalytic properties, ease of fabrication, and very promising stability and display a great potential for replacing the best noble metal and conductive polymer catalytic materials in the building of semitransparent counter electrodes in new generation photoelectrochemical devices.

12.
Dalton Trans ; (44): 5179-89, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17985026

RESUMO

Group 4 metal complexes [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole, M = Ti; R = pyridine, thiazole; M = Zr) containing the tetramethylcyclopentadienyl-dialkylsilyl bridged amidinato as pendant ligand, were synthesized and characterized by elemental analysis, solution (1)H, (13)C and (15)N NMR spectroscopy and experimental (13)C and (15)N CPMAS in the solid state. The crystal structures of [Ti(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole) were determined by single crystal X-ray diffraction studies. All compounds exhibit a distorted tetrahedral geometry, with the ansa-monocyclopentadienyl-amido ligands acting in a bidentate mode. The [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, thiazole; M = Zr, Ti) complexes are ethylene polymerization catalysts in the presence of MAO and they are active precursors in regioselective catalytic hydroamination operating with an anti-Markovnikov mechanism.

13.
Inorg Chem ; 38(16): 3651-3656, 1999 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-11671121

RESUMO

The reaction of the lithiated triamidoamine [Li(3)(NN'(3))(THF)(3)] [NN'(3) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)] with AnCl(4) (An = U, Th) followed by sublimation gives monomeric [An(NN'(3))Cl]. Reaction of these complexes with SiMe(3)X (X = Br, I) gives [An(NN'(3))X]. The amido derivatives [An(NN'(3))(NEt(2))] are prepared from H(3)(NN'(3)) and [U(NEt(2))(4)] and from [Th(NN'(3))Cl] and [Li(NEt(2))]. In each case, the complexes [U(NN'(3))X] (X = Cl, Br, I, NEt(2)) are shown by X-ray crystallography to contain a triamidoamine ligand disposed with 3-fold symmetry about the metal center. The structures are distorted from trigonal bipyramidal by displacement of the uranium atoms out of the equatorial plane of the three amido nitrogen atoms by ca. 0.8 Å. The ligand backbone is distorted in such a manner as to cause the tert-butyldimethylsilyl groups to encircle the equatorial plane of the metal atom rather than surround the apical coordination site as is observed in the transition metal complexes of this type. Variation of the auxiliary ligand has little effect on the orientation, bond lengths, and angles within the (triamidoamine)uranium fragment. The tert-butydimethysilyl-substituted triamidoamine ligand is thus ideally suited for coordination to large metals since it stabilizes the formation of 3-fold symmetric structures while also allowing reactivity at the fifth coordination site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...