Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37947669

RESUMO

Copper oxide nanowires (NWs) are promising elements for the realization of a wide range of devices for low-power electronics, gas sensors, and energy storage applications, due to their high aspect ratio, low environmental impact, and cost-effective manufacturing. Here, we report on the electrical and thermal properties of copper oxide NWs synthetized through thermal growth directly on copper foil. Structural characterization revealed that the growth process resulted in the formation of vertically aligned NWs on the Cu growth substrate, while the investigation of chemical composition revealed that the NWs were composed of CuO rather than Cu2O. The electrical characterization of single-NW-based devices, in which single NWs were contacted by Cu electrodes, revealed that the NWs were characterized by a conductivity of 7.6 × 10-2 S∙cm-1. The effect of the metal-insulator interface at the NW-electrode contact was analyzed by comparing characterizations in two-terminal and four-terminal configurations. The effective thermal conductivity of single CuO NWs placed on a substrate was measured using Scanning Thermal Microscopy (SThM), providing a value of 2.6 W∙m-1∙K-1, and using a simple Finite Difference model, an estimate for the thermal conductivity of the nanowire itself was obtained as 3.1 W∙m-1∙K-1. By shedding new light on the electrical and thermal properties of single CuO NWs, these results can be exploited for the rational design of a wide range of optoelectronic devices based on NWs.

2.
ACS Appl Mater Interfaces ; 15(50): 57992-58002, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37991460

RESUMO

Metasurfaces have garnered increasing research interest in recent years due to their remarkable advantages, such as efficient miniaturization and novel functionalities compared to traditional optical elements such as lenses and filters. These advantages have facilitated their rapid commercial deployment. Recent advancements in nanofabrication have enabled the reduction of optical metasurface dimensions to the nanometer scale, expanding their capabilities to cover visible wavelengths. However, the pursuit of large-scale manufacturing of metasurfaces with customizable functions presents challenges in controlling the dimensions and composition of the constituent dielectric materials. To address these challenges, the combination of block copolymer (BCP) self-assembly and sequential infiltration synthesis (SIS), offers an alternative for fabrication of high-resolution dielectric nanostructures with tailored composition and optical functionalities. However, the absence of metrological techniques capable of providing precise and reliable characterization of the refractive index of dielectric nanostructures persists. This study introduces a hybrid metrology strategy that integrates complementary synchrotron-based traceable X-ray techniques to achieve comprehensive material characterization for the determination of the refractive index on the nanoscale. To establish correlations between material functionality and their underlying chemical, compositional and dimensional properties, TiO2 nanostructures model systems were fabricated by SIS of BCPs. The results from synchrotron-based analyses were integrated into physical models, serving as a validation scheme for laboratory-scale measurements to determine effective refractive indices of the nanoscale dielectric materials.

3.
Nat Commun ; 14(1): 5723, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758693

RESUMO

Self-organizing memristive nanowire connectomes have been exploited for physical (in materia) implementation of brain-inspired computing paradigms. Despite having been shown that the emergent behavior relies on weight plasticity at single junction/synapse level and on wiring plasticity involving topological changes, a shift to multiterminal paradigms is needed to unveil dynamics at the network level. Here, we report on tomographical evidence of memory engrams (or memory traces) in nanowire connectomes, i.e., physicochemical changes in biological neural substrates supposed to endow the representation of experience stored in the brain. An experimental/modeling approach shows that spatially correlated short-term plasticity effects can turn into long-lasting engram memory patterns inherently related to network topology inhomogeneities. The ability to exploit both encoding and consolidation of information on the same physical substrate would open radically new perspectives for in materia computing, while offering to neuroscientists an alternative platform to understand the role of memory in learning and knowledge.


Assuntos
Conectoma , Nanofios , Aprendizagem , Encéfalo/diagnóstico por imagem
4.
ACS Appl Polym Mater ; 5(3): 2079-2087, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427013

RESUMO

The sequential infiltration synthesis (SIS) of inorganic materials in nanostructured block copolymer templates has rapidly progressed in the last few years to develop functional nanomaterials with controllable properties. To assist this rapid evolution, expanding the capabilities of nondestructive methods for quantitative characterization of the materials properties is required. In this paper, we characterize the SIS process on three model polymers with different infiltration profiles through ex situ quantification by reference-free grazing incidence X-ray fluorescence. More qualitative depth distribution results were validated by means of X-ray photoelectron spectroscopy and scanning transmission electron microscopy combined with energy-dispersive X-ray spectroscopy.

5.
Adv Mater ; 34(32): e2201248, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35404522

RESUMO

Quantum effects in novel functional materials and new device concepts represent a potential breakthrough for the development of new information processing technologies based on quantum phenomena. Among the emerging technologies, memristive elements that exhibit resistive switching, which relies on the electrochemical formation/rupture of conductive nanofilaments, exhibit quantum conductance effects at room temperature. Despite the underlying resistive switching mechanism having been exploited for the realization of next-generation memories and neuromorphic computing architectures, the potentialities of quantum effects in memristive devices are still rather unexplored. Here, a comprehensive review on memristive quantum devices, where quantum conductance effects can be observed by coupling ionics with electronics, is presented. Fundamental electrochemical and physicochemical phenomena underlying device functionalities are introduced, together with fundamentals of electronic ballistic conduction transport in nanofilaments. Quantum conductance effects including quantum mode splitting, stability, and random telegraph noise are analyzed, reporting experimental techniques and challenges of nanoscale metrology for the characterization of memristive phenomena. Finally, potential applications and future perspectives are envisioned, discussing how memristive devices with controllable atomic-sized conductive filaments can represent not only suitable platforms for the investigation of quantum phenomena but also promising building blocks for the realization of integrated quantum systems working in air at room temperature.

6.
Nat Mater ; 21(2): 195-202, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34608285

RESUMO

Neuromorphic computing aims at the realization of intelligent systems able to process information similarly to our brain. Brain-inspired computing paradigms have been implemented in crossbar arrays of memristive devices; however, this approach does not emulate the topology and the emergent behaviour of biological neuronal circuits, where the principle of self-organization regulates both structure and function. Here, we report on in materia reservoir computing in a fully memristive architecture based on self-organized nanowire networks. Thanks to the functional synaptic connectivity with nonlinear dynamics and fading memory properties, the designless nanowire complex network acts as a network-wide physical reservoir able to map spatio-temporal inputs into a feature space that can be analysed by a memristive resistive switching memory read-out layer. Computing capabilities, including recognition of spatio-temporal patterns and time-series prediction, show that the emergent memristive behaviour of nanowire networks allows in materia implementation of brain-inspired computing paradigms characterized by a reduced training cost.


Assuntos
Nanofios , Redes Neurais de Computação , Encéfalo , Neurônios/fisiologia , Dinâmica não Linear
7.
Sci Rep ; 11(1): 13167, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162910

RESUMO

The knowledge of the spatial distribution of the electrical conductivity of metallic nanowire networks (NWN) is important for tailoring the performance in applications. This work focuses on Electrical Resistance Tomography (ERT), a technique that maps the electrical conductivity of a sample from several resistance measurements performed on its border. We show that ERT can be successfully employed for NWN characterisation if a dedicated measurement protocol is employed. When applied to other materials, ERT measurements are typically performed with a constant current excitation; we show that, because of the peculiar microscopic structure and behaviour of metallic NWN, a constant voltage excitation protocols is preferable. This protocol maximises the signal to noise ratio in the resistance measurements-and thus the accuracy of ERT maps-while preventing the onset of sample alterations.

8.
Beilstein J Nanotechnol ; 12: 366-374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981531

RESUMO

We report experimental evidence for a spontaneous shape transition, from regular islands to elongated nanowires, upon high-temperature annealing of a thin Mn wetting layer evaporated on Ge(111). We demonstrate that 4.5 monolayers is the critical thickness of the Mn layer, governing the shape transition to wires. A small change around this value modulates the geometry of the nanostructures. The Mn-Ge alloy nanowires are single-crystalline structures with homogeneous composition and uniform width along their length. The shape evolution towards nanowires occurs for islands with a mean size of ≃170 nm. The wires, up to ≃1.1 µm long, asymptotically tend to ≃80 nm of width. We found that tuning the annealing process allows one to extend the wire length up to ≃1.5 µm with a minor rise of the lateral size to ≃100 nm. The elongation process of the nanostructures is in agreement with a strain-driven shape transition mechanism proposed in the literature for other heteroepitaxial systems. Our study gives experimental evidence for the spontaneous formation of spatially uniform and compositionally homogeneous Mn-rich GeMn nanowires on Ge(111). The reliable and simple synthesis approach allows one to exploit the room-temperature ferromagnetic properties of the Mn-Ge alloy to design and fabricate novel nanodevices.

9.
Nanomaterials (Basel) ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924480

RESUMO

In the continuous downscaling of device features, the microelectronics industry is facing the intrinsic limits of conventional lithographic techniques. The development of new synthetic approaches for large-scale nanopatterned materials with enhanced performances is therefore required in the pursuit of the fabrication of next-generation devices. Self-assembled materials as block copolymers (BCPs) provide great control on the definition of nanopatterns, promising to be ideal candidates as templates for the selective incorporation of a variety of inorganic materials when combined with sequential infiltration synthesis (SIS). In this review, we report the latest advances in nanostructured inorganic materials synthesized by infiltration of self-assembled BCPs. We report a comprehensive description of the chemical and physical characterization techniques used for in situ studies of the process mechanism and ex situ measurements of the resulting properties of infiltrated polymers. Finally, emerging optical and electrical properties of such materials are discussed.

10.
ACS Appl Mater Interfaces ; 12(43): 48773-48780, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33052645

RESUMO

Memristive devices based on electrochemical resistive switching effects have been proposed as promising candidates for in-memory computing and for the realization of artificial neural networks. Despite great efforts toward understanding the nanoionic processes underlying resistive switching phenomena, comprehension of the effect of competing redox processes on device functionalities from the materials perspective still represents a challenge. In this work, we experimentally and theoretically investigate the concurring reactions of silver and moisture and their impact on the electronic properties of a single-crystalline ZnO nanowire (NW). A decrease in electronic conductivity due to surface adsorption of moisture is observed, whereas, at the same time, water molecules reduce the energy barrier for Ag+ ion migration on the NW surface, facilitating the conductive filament formation. By controlling the relative humidity, the ratio of intrinsic electronic conductivity and surface ionic conductivity can be tuned to modulate the device performance. The results achieved on a single-crystalline memristive model system shed new light on the dual nature of the mechanism of how moisture affects resistive switching behavior in memristive devices.

11.
Nanomaterials (Basel) ; 10(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32045986

RESUMO

In this work, we performed a systematic study on the effect of the geometry of pre-patterned templates and spin-coating conditions on the self-assembling process of colloidal nanospheres. To achieve this goal, large-scale templates, with different size and shape, were generated by direct laser-writer lithography over square millimetre areas. When deposited over patterned templates, the ordering dynamics of the self-assembled nanospheres exhibits an inverse trend with respect to that observed for the maximisation of the correlation length ξ on a flat surface. Furthermore, the self-assembly process was found to be strongly dependent on the height (H) of the template sidewalls. In particular, we observed that, when H is 0.6 times the nanospheres diameter and spinning speed 2500 rpm, the formation of a confined and well ordered monolayer is promoted. To unveil the defects generation inside the templates, a systematic assessment of the directed self-assembly quality was performed by a novel method based on Delaunay triangulation. As a result of this study, we found that, in the best deposition conditions, the self-assembly process leads to well-ordered monolayer that extended for tens of micrometres within the linear templates, where 96.2% of them is aligned with the template sidewalls.

12.
RSC Adv ; 10(25): 14958-14964, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497145

RESUMO

Photonic crystals are a unique tool to modify the photoluminescence of light-emitting materials. A variety of optical effects have been demonstrated by infiltrating opaline structures with photoactive media. On the other hand, the fabrication of such structures includes complex infiltration steps, that often affect the opal lattice and decrease the efficiency of light emission control. In this work, silica nanospheres were directly functionalized with rhodamine B to create an emitting shell around the dielectric core. Simple tuning of the microsphere preparation conditions allows selecting the appropriate sphere diameter and polydispersity index approaching 5%. These characteristics allow facile self-assembling of the nanospheres into three-dimensional photonic crystals whose peculiar density of photonic states at the band-gap edges induces spectral redistribution of the rhodamine B photoluminescence. The possibility to employ the new stable structure as sensor is also investigated. As a proof of principle, we report the variation of light emission obtained by exposure of the opal to vapor of chlorobenzene.

13.
ACS Photonics ; 7(3): 774-783, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33644254

RESUMO

Axis-symmetric grooves milled in metallic slabs have been demonstrated to promote the transfer of Orbital Angular Momentum (OAM) from far- to near-field and vice versa, thanks to spin-orbit coupling effects involving Surface Plasmons (SP). However, the high absorption losses and the polarization constraints, which are intrinsic in plasmonic structures, limit their effectiveness for applications in the visible spectrum, particularly if emitters located in close proximity to the metallic surface are concerned. Here, an alternative mechanism for vortex beam generation is presented, wherein a free-space radiation possessing OAM is obtained by diffraction of Bloch Surface Waves (BSWs) on a dielectric multilayer. A circularly polarized laser beam is tightly focused on the multilayer surface by means of an immersion optics, such that TE-polarized BSWs are launched radially from the focused spot. While propagating on the multilayer surface, BSWs exhibit a spiral-like wavefront due to the Spin-Orbit Interaction (SOI). A spiral grating surrounding the illumination area provides for the BSW diffraction out-of-plane and imparts an additional azimuthal geometric phase distribution defined by the topological charge of the spiral structure. At infinity, the constructive interference results into free-space beams with defined combinations of polarization and OAM satisfying the conservation of the Total Angular Momentum, based on the incident polarization handedness and the spiral grating topological charge. As an extension of this concept, chiral diffractive structures for BSWs can be used in combination with surface cavities hosting light sources therein.

14.
Materials (Basel) ; 12(18)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500223

RESUMO

Lithography on a sub-100 nm scale is beyond the diffraction limits of standard optical lithography but is nonetheless a key step in many modern technological applications. At this length scale, there are several possible approaches that require either the preliminary surface deposition of materials or the use of expensive and time-consuming techniques. In our approach, we demonstrate a simple process, easily scalable to large surfaces, where the surface patterning that controls pore formation on highly doped silicon wafers is obtained by an electrochemical process. This method joins the advantages of the low cost of an electrochemical approach with its immediate scalability to large wafers.

15.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382622

RESUMO

Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are the most promising human source with preserved genetic background of healthy individuals or patients. This study aimed to establish a systematic procedure for exploring development of hiPSC-CM functional output to predict genetic cardiomyopathy outcomes and identify molecular targets for therapy. Biomimetic substrates with microtopography and physiological stiffness can overcome the immaturity of hiPSC-CM function. We have developed a custom-made apparatus for simultaneous optical measurements of hiPSC-CM action potential and calcium transients to correlate these parameters at specific time points (day 60, 75 and 90 post differentiation) and under inotropic interventions. In later-stages, single hiPSC-CMs revealed prolonged action potential duration, increased calcium transient amplitude and shorter duration that closely resembled those of human adult cardiomyocytes from fresh ventricular tissue of patients. Thus, the major contribution of sarcoplasmic reticulum and positive inotropic response to ß-adrenergic stimulation are time-dependent events underlying excitation contraction coupling (ECC) maturation of hiPSC-CM; biomimetic substrates can promote calcium-handling regulation towards adult-like kinetics. Simultaneous optical recordings of long-term cultured hiPSC-CMs on biomimetic substrates favor high-throughput electrophysiological analysis aimed at testing (mechanistic hypothesis on) disease progression and pharmacological interventions in patient-derived hiPSC-CMs.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Cálcio/metabolismo , Cardiomiopatias/tratamento farmacológico , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Biomimética , Cardiomiopatias/genética , Cardiomiopatias/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Acoplamento Excitação-Contração/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Especificidade por Substrato
16.
Adv Sci (Weinh) ; 6(14): 1801826, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31380197

RESUMO

Cell-substrate interactions can modulate cellular behaviors in a variety of biological contexts, including development and disease. Light-responsive materials have been recently proposed to engineer active substrates with programmable topographies directing cell adhesion, migration, and differentiation. However, current approaches are affected by either fabrication complexity, limitations in the extent of mechanical stimuli, lack of full spatio-temporal control, or ease of use. Here, a platform exploiting light to plastically deform micropatterned polymeric substrates is presented. Topographic changes with remarkable relief depths in the micron range are induced in parallel, by illuminating the sample at once, without using raster scanners. In few tens of seconds, complex topographies are instructed on demand, with arbitrary spatial distributions over a wide range of spatial and temporal scales. Proof-of-concept data on breast cancer cells and normal kidney epithelial cells are presented. Both cell types adhere and proliferate on substrates without appreciable cell damage upon light-induced substrate deformations. User-provided mechanical stimulation aligns and guides cancer cells along the local deformation direction and constrains epithelial colony growth by biasing cell division orientation. This approach is easy to implement on general-purpose optical microscopy systems and suitable for use in cell biology in a wide variety of applications.

17.
Nanotechnology ; 30(24): 244001, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30808016

RESUMO

Metal-semiconductor interfaces play a crucial role not only for regulating the electronic conduction mechanism but also in determining new functionalities in nanosized devices. In this work, we reported the investigation of the junction properties of single ZnO nanowires (NWs) asymmetrically contacted by means of a Pt electrochemically inert and a Cu electrochemically active electrode. At low applied voltages, these devices operate as diodes where the conduction mechanism was found to be dominated by the Schottky barrier at the Cu/ZnO interface. Junction parameters such as the Schottky barrier height, the ideality factor and the series resistance have been analyzed according to the thermionic emission theory. Different methods for parameter retrieval from I-V-T measurements are discussed and compared. A potential fluctuation model is considered in order to account for barrier inhomogeneities, revealing the presence of two Gaussian distribution of barrier heights. On the other hand, new device features arise from electrochemical dissolution and migration of Cu ions along the NW when high electric fields are implied. These electrochemical processes are underlaying the resistive switching and memristive behavior observed in single ZnO NWs, as suggested also by direct observation of Cu nanoclusters along the nanostructures after the switching events.

18.
Nat Commun ; 9(1): 5151, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514894

RESUMO

The ability for artificially reproducing human brain type signals' processing is one of the main challenges in modern information technology, being one of the milestones for developing global communicating networks and artificial intelligence. Electronic devices termed memristors have been proposed as effective artificial synapses able to emulate the plasticity of biological counterparts. Here we report for the first time a single crystalline nanowire based model system capable of combining all memristive functions - non-volatile bipolar memory, multilevel switching, selector and synaptic operations imitating Ca2+ dynamics of biological synapses. Besides underlying common electrochemical fundamentals of biological and artificial redox-based synapses, a detailed analysis of the memristive mechanism revealed the importance of surfaces and interfaces in crystalline materials. Our work demonstrates the realization of self-assembled, self-limited devices feasible for implementation via bottom up approach, as an attractive solution for the ultimate system miniaturization needed for the hardware realization of brain-inspired systems.


Assuntos
Biomimética/instrumentação , Eletroquímica/instrumentação , Eletroquímica/métodos , Eletrônica/instrumentação , Memória/fisiologia , Nanofios/química , Redes Neurais de Computação , Encéfalo , Eletrodos , Desenho de Equipamento , Humanos , Modelos Neurológicos , Nanotecnologia , Plasticidade Neuronal , Compostos de Prata/química , Sinapses/química , Sinapses/fisiologia , Volatilização , Óxido de Zinco/química
19.
Sci Rep ; 8(1): 11305, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054503

RESUMO

Controlling the location and the distribution of hot spots is a crucial aspect in the fabrication of surface-enhanced Raman spectroscopy (SERS) substrates for bio-analytical applications. The choice of a suitable method to tailor the dimensions and the position of plasmonic nanostructures becomes fundamental to provide SERS substrates with significant signal enhancement, homogeneity and reproducibility. In the present work, we studied the influence of the long-range ordering of different flexible gold-coated Si nanowires arrays on the SERS activity. The substrates are made by nanosphere lithography and metal-assisted chemical etching. The degree of order is quantitatively evaluated through the correlation length (ξ) as a function of the nanosphere spin-coating speed. Our findings showed a linear increase of the SERS signal for increasing values of ξ, coherently with a more ordered and dense distribution of hot spots on the surface. The substrate with the largest ξ of 1100 nm showed an enhancement factor of 2.6 · 103 and remarkable homogeneity over square-millimetres area. The variability of the signal across the substrate was also investigated by means of a 2D chemical imaging approach and a standard methodology for its practical calculation is proposed for a coherent comparison among the data reported in literature.

20.
ACS Nano ; 12(7): 7076-7085, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29952543

RESUMO

We investigated the dewetting process on flat and chemically patterned surfaces of ultrathin films (thickness between 2 and 15 nm) of a cylinder forming polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) spin coated on poly(styrene- r-methyl methacrylate) random copolymers (RCPs). When the PS- b-PMMA film dewets on a 2 nm-thick RCP layer, the ordering of the hexagonally packed PMMA cylinders in the dewetted structures extends over distances far exceeding the correlation length obtained in continuous block copolymer (BCP) films. As a result, micrometer-sized circular droplets featuring defectless single grains of self-assembled PS- b-PMMA with PMMA cylinders perpendicularly oriented with respect to the substrate are generated and randomly distributed on the substrate. Additionally, alignment of the droplets along micrometric lines was achieved by performing the dewetting process on large-scale chemically patterned stripes of 2 nm thick RCP films by laser lithography. By properly adjusting the periodicity of the chemical pattern, it was possible to tune and select the geometrical characteristics of the dewetted droplets in terms of maximum thickness, contact angle and diameter while maintaining the defectless single grain perpendicular cylinder morphology of the circular droplets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...