Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 117-128, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38141018

RESUMO

Vanadium is accommodated in both the framework (VoutV) and central positions (VinV) in the Keggin-type polyoxometalates (POMs) [VinVVoutVM11O40]4- (M = Mo, W; VinVVoutVM11) and in the central position in [VinVM12O40]3- (VinVM12). The structures of the VinVVoutVM11 class have been determined by X-ray crystallography and compared to those of VinVM12 reported previously. A major feature of interest with POMs is their capacity for very extensive reduction, particularly when protonation accompanies the electron transfer step. With VinVVoutVM11 and VinVM12 POMs, knowledge as to whether reduction occurs at V or M sites and the concomitant dependence on acidity has been obtained. Frozen solution EPR spectra obtained following bulk electrolysis showed that the one-electron reduction of VinVMo12 occurs at the molybdenum framework site to give VinVMoVMo11. In contrast, EPR spectra of one-electron reduced VinVW12 at <30 K are consistent with the electron being accommodated on the central V atom in a tetrahedral environment to give VinIVW12. In the case of VinVVoutVM11, the initial reduction occurs at the framework VoutV site to give VinVVoutIVM11. The second electron is delocalized over the Mo framework in two-electron reduced VinVVoutIVMoVMo10, whereas it is accommodated on the central V site in VinIVVoutIVW11. The distance between VinIV and VoutIV in VinIVVoutIVW11 estimated as 3.5 ± 0.2 Å from analysis of the EPR spectrum is consistent with that obtained in VinVVoutVW11 from crystallographic data. Simulations of the cyclic voltammograms as a function of CF3SO3H acid concentration for the initial reduction processes provide excellent agreement with experimental data obtained in acetonitrile (0.10 M [n-Bu4N][PF6]) and allowed acid association constants to be estimated and compared with the literature values available for [XVoutVM11O40]n- (X = S (n = 3), P and As (n= 4); M = Mo, W). The interpretation of the voltammetric data is supported by 51V NMR measurements on the oxidized VV forms of the POMs.

2.
Inorg Chem ; 60(24): 18899-18911, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34851646

RESUMO

[Pt{(p-BrC6F4)NCH═C(Cl)NEt2}Cl(py)] (1Cl) is the product of the hydrogen peroxide oxidation of the PtII anticancer agent [Pt{(p-BrC6F4)NCH2CH2NEt2}Cl(py)] (1). Insights into electron delocalization and bonding in [Pt{(p-BrC6F4)NCH═C(Cl)NEt2}Cl(py)]+ (1Cl+) obtained by electrochemical oxidation of 1Cl have been gained by spectroscopic and computational studies. The 1Cl/1Cl+ process is chemically and electrochemically reversible on the short time scale of voltammetry in dichloromethane (0.10 M [Bu4N][PF6]). Substantial stability is retained on longer time scales enabling a high yield of 1Cl+ to be generated by bulk electrolysis. In situ IR and visible spectroelectrochemical studies on the oxidation of 1Cl to 1Cl+ and the reduction of 1Cl+ back to 1Cl confirm the long-term chemical reversibility. DFT calculations indicate only a minor contribution to the electron density (13%) resides on the Pt metal center in 1Cl+, indicating that the 1Cl/1Cl+ oxidation process is extensively ligand-based. Published X-ray crystallographic data show that 1Cl is present in only one structural form, while NMR data on the dissolved crystals revealed the presence of two closely related structural forms in an almost equimolar ratio. Solution-phase EPR spectra of 1Cl+ are consistent with two closely related structural forms in a ratio of about 90:10. The average g value for the frozen solution spectra (2.0567 for the major species) is significantly greater than the 2.0023 expected for a free radical. Crystal field analysis of the EPR spectra leads to an estimate of the 5d(xz) character of around 10% in 1Cl+. Analysis of X-ray absorption fine structure derived from 1Cl+ also supports the presence of a delocalized singly occupied metal molecular orbital with a spin density of approximately 17% on Pt. Accordingly, the considerably larger electron density distribution on the ligand framework (diminished PtIII character) is proposed to contribute to the increased stability of 1Cl+ compared to that of 1+.

3.
Inorg Chem ; 59(15): 10522-10531, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32786655

RESUMO

Polyoxometalates (POMs) have been proposed as electromaterials for lithium-based batteries because they provide access to multiple electron transfer reactions coupled to fast lithium ion transport processes and high stability over many redox cycles. Consequently, knowledge of reversible potentials and Li+ cation-POM anion interactions provides a strategic basis for their further development. In this study, detailed cyclic voltammetric studies of a series of [XVVM11O40]n- (XVM11n-) POMs (where X (heteroatom) = P (n = 4), As (n = 4), and S (n = 3) and M (addenda atom) = Mo, W) have been undertaken in CH3CN in the presence of LiClO4, with n-Bu4NPF6 also present when required to keep the ionic strength close to constant value of 0.1 M. An analysis of the data has allowed the impact of the POM charge, and addenda and hetero atoms on the reversible potentials and the interaction between Li+ and the oxidized XVVM11n- and reduced XVIVM11(n+1)- forms of the VV/IV redox couple to be determined. The SVV/IVM113-/4- process is independent of the Li+ concentration, implying the absence of the association of this cation with either SVVM113- or SVIVM114- redox levels. However, lithium-ion association constants for both VV and VIV redox levels were obtained from a comparison of simulated and experimental cyclic voltammograms for the reduction of the more negatively charged XVVM114- (X = P, As; M = Mo, W), since the Li+ interaction with these more negatively charged POMs is much stronger. The interaction between Li+ and the oxidized, XVVM11n-, and reduced, XVIVM11(n+1)-, forms was also investigated by 51V NMR and EPR spectroscopy, respectively, and it was confirmed that, due to their lower charge density, SVVM113- and SVIVM114- interact significantly less strongly with the lithium ion than XVVM114- and XVIVM115- (X = P, As). The lithium-POM association constants are substantially smaller than the corresponding proton association constants reported previously, which is attributed to a smaller surface charge density. The much stronger impact of Li+ on the WVI/V- and MoVI/V-based reductions that occur at more negative potentials than the VV/IV process also has been qualitatively evaluated.

4.
Angew Chem Int Ed Engl ; 58(30): 10048-10050, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31267599

RESUMO

The authors of the Communication "Stabilization of Low-Valent Iron(I) in a High-Valent Vanadium(V) Oxide Cluster" reply to a Comment by Dr. Sproules, who offered an alternative interpretation of the metal oxidation states in the two electron reduced iron vanadate (NH2 Me2 )[(FeCl)V12 O32 Cl]4- .

5.
Angew Chem Int Ed Engl ; 56(46): 14749-14752, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28906058

RESUMO

Low-valent iron centers are critical intermediates in chemical and bio-chemical processes. Herein, we show the first example of a low-valent FeI center stabilized in a high-valent polyoxometalate framework. Electrochemical studies show that the FeIII -functionalized molecular vanadium(V) oxide (DMA)[FeIII ClVV12 O32 Cl]3- (DMA=dimethylammonium) features two well-defined, reversible, iron-based electrochemical reductions which cleanly yield the FeI species (DMA)[FeI ClVV12 O32 Cl]5- . Experimental and theoretical studies including electron paramagnetic resonance spectroscopy and density functional theory computations verify the formation of the FeI species. The study presents the first example for the seemingly paradoxical embedding of low-valent metal species in high-valent metal oxide anions and opens new avenues for reductive electron transfer catalysis by polyoxometalates.

6.
Inorg Chem ; 56(7): 3990-4001, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28290689

RESUMO

The structure of the Keggin-type ß-[PW12O40]3- (PW12) polyoxometalate, with n-Bu4N+ as the countercation, has been determined for the first time by single-crystal X-ray analysis and compared to data obtained from a new determination of the structure of the α-PW12 isomer, having the same countercation. Analysis of cyclic voltammograms obtained in CH3CN (0.1 M [n-Bu4N][PF6]) reveals that the reversible potential for the ß-PW12 isomer always remains ca. 100 mV more positive than that of the α-PW12 isomer on addition of the acid CF3SO3H. Simulations of the cyclic voltammetry as a function of acid concentration over the range 0-5 mM mimic experimental data exceptionally well. These simulation-experiment comparisons provide access to reversible potentials and acidity constants associated with α and ß fully oxidized and one- and two-electron reduced systems and also explain how the two well-resolved one-electron W(VI)/W(V) processes converge into a single two-electron process if sufficient acid is present. 183W NMR spectra of the oxidized forms of the PW12 isomers are acid dependent and in the case of ß-PW12 imply that the bridging oxygens between the WI and WII units are preferentially protonated in acidic media. EPR data on frozen solutions of one-electron reduced ß-[PWVWVI11O40]4- indicate that either the WI or the WIII unit in ß-PW12 is reduced in the ß-[PWVI12O40]3-/ß-[PWVWVI11O40]4- process. In the absence of acid, reversible potentials obtained from the α- and ß-isomers of PW12 and [SiW12O40]4- exhibit a linear relationship with solvent properties such as Lewis acidity, acceptor number, and polarity index.

7.
J Inorg Biochem ; 162: 194-200, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26821832

RESUMO

The bulk oxidative electrolysis of a 2mM solution of trans-[PtII{(p-HC6F4)NCH2CH2NEt2}Cl(py)] in highly non-coordinating dichloromethane (0.05M [Bu4N][B(C6F5)]) media leads to the formation of about 14% of the PtIII species trans-[PtIII{(p-HC6F4)NCH2CH2NEt2}Cl(py)]+. The EPR spectrum of this electro-synthesized formally PtIII species shows Pt-hyperfine coupling with gx~gy>gz~ge, and is broadly consistent with the simple crystal field theory prediction for 5d7 PtIII in an elongated tetragonal environment where the unpaired electron is in a 5d(z2) orbital. The crystal field calculations lead to an estimate of the 5d(z2) character of around 37% and indicate partial delocalization of the unpaired electron onto the orbitals of the surrounding ligands. Transient cyclic voltammetric and steady-state microelectrode studies in the same media as used for bulk electrolysis exhibit a chemically reversible one electron oxidation process under their shorter time scale conditions. Analysis of X-ray diffraction data obtained from a single crystal of trans-[PtII{(p-HC6F4)NCH2CH2NEt2}Cl(py)] shows the square planar geometry of the ligands around the Pt metal center and the 'W' arrangement of the ethyl groups on the ligand is explained in terms of agostic interactions.


Assuntos
Antineoplásicos/química , Elétrons , Fluoretos/química , Platina/química , Piridinas/química , Cristalografia por Raios X , Eletrólise , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Estrutura Molecular , Oxirredução
8.
Dalton Trans ; 44(25): 11660-8, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26051962

RESUMO

Data derived from a voltammetric and spectroscopic study of the V(V/IV) couple associated with the initial reduction of the Wells-Dawson-type mono vanadium-substituted polyoxometalates, 1- and 4-[S2V(V)W17O62](5-) in CH3CN as a function of CF3SO3H acid concentration have been obtained. (51)V NMR (V(V) component) and EPR (V(IV) component) spectra were measured in CH3CN in the presence and absence of an acid. These data showed a small fraction of the 1-isomer in the 4-[S2V(V)W17O62](5-) sample and that protonation could occur at both redox levels for both isomers. On the basis of the mechanism postulated from the voltammetric and spectroscopic data, simulations of cyclic voltammograms were undertaken for the reduction of the isomerically pure 1-[S2V(V)W17O62](5-) isomer over a wide acid concentration range, and the results were compared with experimental data. Cyclic voltammograms of the V(V/IV) couple derived from the reduction of 1- and 4-[X2V(V)W17O62](7-) (X = P, As) were also obtained in CH3CN and the results were compared with those for 1- and 4-[S2V(V)W17O62](5-). Reversible potentials for the V(V/IV) couple are dependent on the anion charge of the polyoxometalate. Analysis of cyclic voltammograms obtained for 1- and 4-[S2V(V)W17O62](5-) in acetonitrile, acetone, dimethyl sulfoxide, dimethyl formamide and nitromethane showed that these V(V/IV) reversible potentials are also dependent on the acceptor numbers and the polarity index (E(T)(N)) values of the organic solvents.


Assuntos
Acetonitrilas/química , Compostos de Tungstênio/química , Vanádio/química , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Solventes/química
9.
Inorg Chem ; 54(9): 4292-302, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25898208

RESUMO

A closo-type 11-vertex osmaborane [1-(η(6)-pcym)-1-OsB10H10] (pcym = para-cymene) has been synthesized and characterized by single-crystal X-ray diffraction and elemental analysis, as well as by (11)B and (1)H NMR, UV-visible, and mass spectrometry. The redox chemistry has been probed by dc and Fourier transformed ac voltammetry and bulk reductive electrolysis in CH3CN (0.10 M (n-Bu)4NPF6) and by voltammetry in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (Pyrr1,4-NTf2), which allows the oxidative chemistry of the osmaborane to be studied. A single-crystal X-ray diffraction analysis has shown that [1-(η(6)-pcym)-1-OsB10H10] is isostructural with other metallaborane compounds of this type. In CH3CN (0.10 M (n-Bu)4NPF6), [1-(η(6)-pcym)-1-OsB10H10] undergoes two well-resolved one-electron reduction processes with reversible potentials separated by ca. 0.63-0.64 V. Analysis based on a comparison of experimental and simulated ac voltammetric data shows that the heterogeneous electron transfer rate constant (k(0)) for the first reduction process is larger than that for the second step at GC, Pt, and Au electrodes. k(0) values for both processes are also larger at GC than metal electrodes and depend on the electrode pretreatment, implying that reductions involve specific interaction with the electrode surface. EPR spectra derived from the product formed by one-electron reduction of [1-(η(6)-pcym)-1-OsB10H10] in CH3CN (0.10 M (n-Bu)4NPF6) and electron orbital data derived from the DFT calculations are used to establish that the formal oxidation state of the metal center of the original unreduced compound is Os(II). On this basis it is concluded that the metal atom in [1-(η(6)-pcym)-1-OsB10H10] and related metallaboranes makes a 3-orbital 2-electron contribution to the borane cluster. Oxidation of [1-(η(6)-pcym)-1-OsB10H10] coupled to fast chemical transformation was observed at 1.6 V vs ferrocene(0/+) in Pyrr1,4-NTf2. A reaction scheme for the oxidation involving formation of [1-(η(6)-pcym)-1-OsB10H10](+), which rearranges to an unknown electroactive derivative, is proposed, and simulations of the voltammograms are provided.

10.
Inorg Chem ; 53(20): 10996-1006, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25271783

RESUMO

Both conventional solution-phase and direct solid-solid redox reactions between tetrathiafulvalene (TTF) and the vanadium-substituted polyoxometalate (n-Bu4N)3[SV(V)W11O40] give rise to microcrystalline or powdered semiconducting charge transfer solid material. A single-crystal X-ray structure derived from growing crystals from a MeCN-CH2Cl2 solution-phase redox reaction gives a stoichiometry of TTF4[SVW11O40]·2H2O·2CH2Cl2 and reveals that there are two crystallographically different TTF cation moieties based on (TTF2)(2+) dimers. While the color and morphology of the microcrystalline or powdered TTF4[SVW11O40] differ from the single crystals prepared for structural analysis, all materials are spectroscopically (infrared (IR), Raman with respect to the TTF bands, and electron paramagnetic resonance (EPR)) indistinguishable. Raman spectra suggest that the charge transfer is unevenly distributed across the (TTF2)(2+) dimers, which is postulated to give rise to enhanced mixed-valence features. Structural, spectral, and other properties, such as conductivity, are compared with results available on the recently published molybdenum TTF4[SVMo11O40]·2H2O·2CH2Cl2 analogue, where the charge distribution is uniform on all TTF cations. In both examples, the position of the V atom is located over several sites. Elemental analysis and voltammetric data also are consistent with the formulations deduced from structural and spectroscopic studies. The conductivity at room temperature is in the semiconducting range, but significantly greater than that for the Mo analogue. EPR spectra at temperatures down to the liquid helium regime confirm the presence of paramagnetic V(IV) and paramagnetic oxidized TTF. The newly isolated TTF-SV(IV)W11O40 material also has magnetic functionality derived from the cationic and anionic components.


Assuntos
Compostos Heterocíclicos/química , Molibdênio/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Compostos de Tungstênio/química , Vanádio/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Modelos Moleculares , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
11.
J Phys Chem B ; 118(24): 6839-49, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24842567

RESUMO

Detailed electrochemical studies have been undertaken on molecular aggregation of the organic semiconductor 7,14-bis((triisopropylsilyl)-ethynyl)dibenzo[b,def]chrysene (TIPS-DBC), which is used as an electron donor material in organic solar cells. Intermolecular association of neutral TIPS-DBC molecules was established by using (1)H NMR spectroscopy as well as by the pronounced dependence of the color of TIPS-DBC solutions on concentration. Diffusion limited current data provided by near steady-state voltammetry also reveal aggregation. Furthermore, variation of concentration produces large changes in shapes of transient DC and Fourier transformed AC (FTAC) voltammograms for oxidation of TIPS-DBC in dichloromethane. Subtle effects of molecular aggregation on the reduction of TIPS-DBC are also revealed by the highly sensitive FTAC voltammetric method. Simulations of FTAC voltammetric data provide estimates of the kinetic and thermodynamic parameters associated with oxidation and reduction of TIPS-DBC. Significantly, aggregation of TIPS-DBC facilitates both one-electron oxidation and reduction by shifting the reversible potentials to less and more positive values, respectively. EPR spectroscopy is used to establish the identity of one-electron oxidized and reduced forms of TIPS-DBC. Implications of molecular aggregation on the HOMO energy level in solution are considered with respect to efficiency of organic photovoltaic devices utilizing TIPS-DBC as an electron donor material.

12.
Inorg Chem ; 53(10): 4891-8, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24784547

RESUMO

Two vanadium(V)-substituted tungsto-polyoxometalate isomers, 1- and 4-[S2VW17O62](5-), were prepared as their tetra-alkyl ammonium salts from a W(VI)-H2SO4-V(V) reaction mixture in aqueous CH3CN solution. X-ray crystallographic structural analysis revealed that both isomers have a Wells-Dawson-type structure with a higher occupancy of vanadium at polar sites and belt sites for 1- and 4-[S2VW17O62](5-), respectively. The isomers were also characterized by elemental analysis, infrared, Raman, UV-vis, and (51)V NMR spectroscopies as well as voltammetry, and the data obtained were compared with that derived from [S2W18O62](4-). Significantly, the reversible potentials for the vanadium(V/IV) couple for both 1- and 4-[S2VW17O62](5-) in CH3CN (0.1 M n-Bu4NPF6) are considerably more positive than the tungstate reduction process exhibited by the [S2W18O62](4-) framework, implying that the presence of vanadium should be useful in catalytic reactions. The one-electron-reduced [S2V(IV)W17O62](6-) forms of both isomers were prepared in solution by controlled potential bulk electrolysis and characterized by voltammetry and EPR spectroscopy.


Assuntos
Complexos de Coordenação/química , Compostos de Tungstênio/química , Vanádio/química , Cristalografia por Raios X , Modelos Moleculares
13.
J Phys Chem B ; 118(11): 3183-91, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24558952

RESUMO

Electrochemical reduction of cis-stilbene occurs by two well-resolved one-electron reduction steps in acetonitrile with (n-Bu)4NPF6 as the supporting electrolyte and in N-butyl-N-methylpyrrolidinium (Pyrr1,4(+)) and (trimethylamine)(dimethylethylamine)-dihydroborate bis(trifluoromethylsulfonyl)amide (NTf2(-)) ionic liquids (ILs). Mechanistic details of the electroreduction have been probed by dc and Fourier transformed ac voltammetry, simulation of the voltammetry, bulk electrolysis, and EPR spectroscopy. The first one-electron reduction induces fast cis to trans isomerization in CH3CN and ILs, most likely occurring via disproportionation of cis-stilbene radical anions and fast transformation of the cis-dianion to the trans-configuration. The second reduction process is chemically irreversible in CH3CN due to protonation of the dianion but chemically reversible in highly aprotic ILs under high cis-stilbene concentration conditions. Increase of the (n-Bu)4NPF6 supporting electrolyte concentration (0.01-1.0 M) in CH3CN induces substantial positive shifts in the potentials for reduction of cis-stilbene, consistent with strong ion pairing of the anion radical and dianion with (n-Bu)4N(+). However, protection by ion pairing against protonation of the stilbene dianions or electrochemically induced cis-trans-stilbene isomerization is not achieved. Differences in electrode kinetics and reversible potentials for cis-stilbene(0/•-) and trans-stilbene(0/•-) processes are less pronounced in the Pyrr1,4-NTf2 ionic liquid than in the molecular solvent acetonitrile.

14.
Dalton Trans ; 43(14): 5462-73, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24522563

RESUMO

Structures of the n-tetrabutylammonium salts of [SVM11O40](3-) (M = Mo, W) have been determined by X-ray crystallography and exhibit 3D networks with the V atom disordered over several sites. The cyclic voltammetric behavior of SVM11 in neutral and acidified acetonitrile solutions also has been investigated with respect to the V(V)/V(IV) couple. Results have been interpreted in conjunction with data provided by (51)V NMR spectroscopy on the oxidized V(V) form and by EPR spectroscopy on the reduced V(IV) form. Based on mechanistic details inferred from these studies, simulations of the cyclic voltammograms have been undertaken and results compared with experimental data in acidic media (two protonated forms) in order to provide estimates of equilibrium and kinetic parameters. For the V(V)/V(IV) couple in the series [XVM11O40](n-) (X = Si,Ge,P,As,S; M = Mo,W), the reversible potentials in neutral acetonitrile linearly depend on the total charge of the vanadium-substituted polyoxometalates, similar to the dependence previously reported for the non-substituted parent Keggin polyoxometalates [XM12O40](m-).

15.
Inorg Chem ; 52(13): 7557-72, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23777336

RESUMO

The reaction of [Co(II)(NO3)2]·6H2O with the nitroxide radical, 4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(•)), produces the mononuclear transition-metal complex [Co(II)(L(•))2](NO3)2 (1), which has been investigated using temperature-dependent magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, electrochemistry, density functional theory (DFT) calculations, and variable-temperature X-ray structure analysis. Magnetic susceptibility measurements and X-ray diffraction (XRD) analysis reveal a central low-spin octahedral Co(2+) ion with both ligands in the neutral radical form (L(•)) forming a linear L(•)···Co(II)···L(•) arrangement. This shows a host of interesting magnetic properties including strong cobalt-radical and radical-radical intramolecular ferromagnetic interactions stabilizing a S = (3)/2 ground state, a thermally induced spin crossover transition above 200 K and field-induced slow magnetic relaxation. This is supported by variable-temperature EPR spectra, which suggest that 1 has a positive D value and nonzero E values, suggesting the possibility of a field-induced transverse anisotropy barrier. DFT calculations support the parallel alignment of the two radical π*NO orbitals with a small orbital overlap leading to radical-radical ferromagnetic interactions while the cobalt-radical interaction is computed to be strong and ferromagnetic. In the high-spin (HS) case, the DFT calculations predict a weak antiferromagnetic cobalt-radical interaction, whereas the radical-radical interaction is computed to be large and ferromagnetic. The monocationic complex [Co(III)(L(-))2](BPh4) (2) is formed by a rare, reductively induced oxidation of the Co center and has been fully characterized by X-ray structure analysis and magnetic measurements revealing a diamagnetic ground state. Electrochemical studies on 1 and 2 revealed common Co-redox intermediates and the proposed mechanism is compared and contrasted with that of the Fe analogues.

16.
Anal Chem ; 85(12): 6113-20, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23659207

RESUMO

Three highly aprotic bis(trifluoromethylsulfonyl)amide (NTf2(-)) based ionic liquids (ILs) containing the cations trihexyl(tetradecyl)phosphonium (P6,6,6,14(+)), N-butyl-N-methylpyrrolidinium (Pyrr4,1(+)), and (trimethylamine)(dimethylethylammine)dihydroborate ((N111)(N112)BH2(+)) have been examined as media for room temperature voltammetric detection of highly basic stilbene dianions electrochemically generated by the reduction of trans-stilbene (t-Stb) and its derivatives (4-methoxy-, 2-methoxy-, 4,4'-dimethyl-, and 4-chloromethyl-). Transient and steady-state data in the ILs were compared with results obtained in the molecular solvent acetonitrile. In all media examined, the t-Stb(0/•-) process is chemically and electrochemically reversible with a heterogeneous charge transfer rate constant in CH3CN of 1.5 cm s(-1), as determined by Fourier transformed AC voltammetry. However, further reduction to the dianion was always irreversible in this molecular but weakly acidic solvent. On the other hand, a substantial level of chemical reversibility for the reduction of t-Stb(•-) to t-Stb(2-) on the time scale of cyclic voltammetry is achieved when the concentration of trans-stilbene, [t-Stb], appreciably exceeds the concentration of adventitious water or other proton sources. In particular, these conditions are met when [t-Stb] ≥ 0.1 M in thoroughly dehydrated and purified ILs, while in the presence of CH3CN, t-Stb(2-) still suffers fast irreversible protonation under these stilbene concentration conditions. The E0/•-(0) values (vs Fc(0/+)) for substituted trans-stilbenes in acetonitrile and (N111)(N112)BH2-NTf2 do not differ substantially, nor do the E0/•-(0) and E•-/2-(0) differences or other aspects of the voltammetric behavior.

17.
Inorg Chem ; 51(23): 12929-37, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23146046

RESUMO

The charge-transfer material TTF-SV(IV)Mo(11)O(40) (TTF = tetrathiafulvalene) was prepared by a spontaneous redox reaction between TTF and the vanadium-substituted polyoxometalate (n-Bu(4)N)(3)[SV(V)Mo(11)O(40)] in both solution and solid state phases. Single crystal X-ray diffraction gave the stoichiometry TTF(4)[SVMo(11)O(40)]·2H(2)O·2CH(2)Cl(2), with the single V atom positionally disordered with eight Mo atoms over the whole α-Keggin polyanion [SVMo(11)O(40)](4-). Raman spectra support the 1+ charge assigned to the oxidized TTF deduced from bond lengths, and elemental and voltammetric analysis also are consistent with this formulation. Scanning electron microscopy images showed a rod-type morphology for the new charge-transfer material. The conductivity of the solid at room temperature is in the semiconducting range. The TTF and (n-Bu(4)N)(3)[SV(V)Mo(11)O(40)] solids also undergo a rapid interfacial reaction, as is the case with TTF and TCNQ (TCNQ = tetracyanoquinodimethane) solids. EPR spectra at temperatures down to 2.6 K confirm the presence of two paramagnetic species, V(IV) and the oxidized TTF radical. Spectral evidence shows that the TTF-SV(IV)Mo(11)O(40) materials prepared from either solution or solid state reactions are equivalent. The newly isolated TTF-SV(IV)Mo(11)O(40) material represents a new class of TTF-polyoxometalate compound having dual electrical and magnetic functionality derived from both the cationic and anionic components.


Assuntos
Compostos Heterocíclicos/química , Molibdênio/química , Oxigênio/química , Enxofre/química , Vanádio/química , Cristalografia por Raios X , Modelos Moleculares , Oxirredução , Termodinâmica
18.
J Org Chem ; 76(24): 10078-82, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22070135

RESUMO

The tetrabutylammonium complex with a 2:5 stoichiometry, (n-Bu(4)N)(2)(TCNQ)(5), has been prepared and structurally characterized by X-ray crystallography. Diagnostic bands in the Raman spectrum and signature features in the electrochemistry confirm that the TCNQ moieties are partially charged in the solid state. EPR, magnetic susceptibility, and electrical conductivity measurements are all consistent with (n-Bu(4)N)(2)(TCNQ)(5) behaving as a quasi-one-dimensional organic semiconductor.

19.
Chemistry ; 17(34): 9350-8, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21732430

RESUMO

Solid-state electrochemistry of a tetracyanoquinodimethane (TCNQ)-modified electrode in contact with a tetrapropylammonium cation (Pr(4)N(+)) electrolyte showed two electron-transfer steps to give Pr(4)N(TCNQ)(2) (1) and Pr(4)N(TCNQ) (2) rather than the traditional one-electron step to directly give Pr(4)N(TCNQ). Two thermodynamically stable Pr(4)N(+)-TCNQ stoichiometries, 1 and 2, were synthesized and characterized. The degree of charge transfer (ρ) calculated from the crystal structure is -0.5 for the TCNQ moieties in 1 and -1.0 for those in 2. Raman spectra for Pr(4)N(TCNQ)(2) show only one resonance for the extracyclic C=C stretching at 1423 cm(-1), which lies approximately midway between that of TCNQ at 1454 cm(-1) and TCNQ(-) at 1380 cm(-1). Both the magnetic susceptibility and EPR spectra are temperature-dependent, with a magnetic moment close to that for one unpaired electron per (TCNQ)(2) unit in 1, whereas 2 is almost diamagnetic. Pressed discs of both complexes show conductivity (1-2×10(-5) S cm(-1)) in the semiconductor range. For 1, the position of zero current for the steady-state voltammograms implies 50% of TCNQ(-) and 50% TCNQ(0) is present in solution, thereby supporting a dissociation of (TCNQ)(2)(-) in solution, but is indicative of only TCNQ(-) being present for 2.

20.
Inorg Chem ; 50(7): 3052-64, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21384832

RESUMO

The reaction of [Fe(II)(BF(4))(2)]·6H(2)O with the nitroxide radical, 4,4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(•)), produces the mononuclear transition metal complex [Fe(II)(L(•))(2)](BF(4))(2) (1) which has been investigated using temperature dependent susceptibility, Mössbauer spectroscopy, electrochemistry, density functional theory (DFT) calculations, and X-ray structure analysis. Single crystal X-ray diffraction analysis and Mössbauer measurements reveal an octahedral low spin Fe(2+) environment where the pyridyl donors from L(•) coordinate equatorially while the oxygen containing the radical from L(•) coordinates axially forming a linear O(•)··Fe(II)··O(•) arrangement. Magnetic susceptibility measurements show a strong radical-radical intramolecular antiferromagnetic interaction mediated by the diamagnetic Fe(2+) center. This is supported by DFT calculations which show a mutual spatial overlap of 0.24 and a spin density population analysis which highlights the antiparallel spin alignment between the two ligands. Similarly the monocationic complex [Fe(III)(L(-))(2)](BPh(4))·0.5H(2)O (2) has been fully characterized with Fe-ligand and N-O bond length changes in the X-ray structure analysis, magnetic measurements revealing a Curie-like S = 1/2 ground state, electron paramagnetic resonance (EPR) spectra, DFT calculations, and electrochemistry measurements all consistent with assignment of Fe in the (III) state and both ligands in the L(-) form. 2 is formed by a rare, reductively induced oxidation of the Fe center, and all physical data are self-consistent. The electrochemical studies were undertaken for both 1 and 2, thus allowing common Fe-ligand redox intermediates to be identified and the results interpreted in terms of square reaction schemes.


Assuntos
Quelantes/química , Compostos Férricos/química , Compostos Ferrosos/química , Óxidos de Nitrogênio/química , Ânions/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...