Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 116(3): 573-585, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30665694

RESUMO

The tectorial membrane (TM) is an extracellular matrix that is directly coupled with the mechanoelectrical receptors responsible for sensory transduction and amplification. As such, the TM is often hypothesized to play a key role in the remarkable sensory abilities of the mammalian cochlea. Genetic studies targeting TM proteins have shown that changes in TM structure dramatically affect cochlear function in mice. Precise information about the mechanical properties of the TMs of wild-type and mutant mice at audio frequencies is required to elucidate the role of the TM and to understand how these genetic mutations affect cochlear mechanics. In this study, images of isolated TM segments are used to determine both the radial and longitudinal motions of the TM in response to a harmonic radial excitation. The resulting longitudinally propagating radial displacement and highly spatially dependent longitudinal displacement are modeled using finite-element models that take into account the anisotropy and finite dimensions of TMs. An automated, least-square fitting algorithm is used to find the anisotropic material properties of wild-type and Tectb-/- mice at audio frequencies. Within the auditory frequency range, it is found that the TM is a highly viscoelastic and anisotropic structure with significantly higher stiffness in the direction of the collagen fibers. Although no decrease in the stiffness in the fiber direction is observed, the stiffness of the TM in shear and in the transverse direction is found to be significantly reduced in Tectb-/- mice. As a result, TMs of the mutant mice tend to be significantly more anisotropic within the frequency range examined in this study. The effects of the Tectb-/- mutation on the TM's anisotropic material properties may be responsible for the changes in cochlear tuning and sensitivity that have been previously reported for these mice.


Assuntos
Proteínas da Matriz Extracelular/deficiência , Fenômenos Mecânicos , Membrana Tectorial/metabolismo , Animais , Anisotropia , Fenômenos Biomecânicos , Elasticidade , Camundongos , Modelos Biológicos , Movimento , Viscosidade
2.
Adv Mater ; 29(26)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28466566

RESUMO

Materials with engineered thermal expansion, capable of achieving targeted area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with engineered coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here it is shown that origami metamaterials also provide a platform for the design of systems with a wide range of thermal expansion coefficients. Experiments and simulations are combined to demonstrate that by tuning the geometrical parameters of the origami structure and the arrangement of plates and creases, an extremely broad range of thermal expansion coefficients can be obtained. Differently from all previously reported systems, the proposed structure is tunable in situ and nonporous.

3.
J Funct Biomater ; 6(3): 585-97, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26184329

RESUMO

Computer-based simulations are nowadays widely exploited for the prediction of the mechanical behavior of different biomedical devices. In this aspect, structural finite element analyses (FEA) are currently the preferred computational tool to evaluate the stent response under bending. This work aims at developing a computational framework based on linear and higher order FEA to evaluate the flexibility of self-expandable carotid artery stents. In particular, numerical simulations involving large deformations and inelastic shape memory alloy constitutive modeling are performed, and the results suggest that the employment of higher order FEA allows accurately representing the computational domain and getting a better approximation of the solution with a widely-reduced number of degrees of freedom with respect to linear FEA. Moreover, when buckling phenomena occur, higher order FEA presents a superior capability of reproducing the nonlinear local effects related to buckling phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA