Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biomed Eng ; 5(1): 5, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259126

RESUMO

BACKGROUND: In respiratory fluid dynamics research, it is typically assumed that the wall of the trachea is smooth. However, the trachea is structurally supported by a series of cartilaginous rings that create undulations on the wall surface, which introduce perturbations into the flow. Even though many studies use realistic Computer Tomography (CT) scan data to capture the complex geometry of the respiratory system, its limited spatial resolution does not resolve small features, including those introduced by the cartilaginous rings. RESULTS: Here we present an experimental comparison of two simplified trachea models with Grade II stenosis (70% blockage), one with smooth walls and second with cartilaginous rings. The use a unique refractive index-matching method provides unprecedented optical access and allowed us to perform non-intrusive velocity field measurements close to the wall (e.g., Particle Image Velocimetry (PIV)). Measurements were performed in a flow regime comparable to a resting breathing state (Reynolds number ReD = 3350). The cartilaginous rings induce velocity fluctuations in the downstream flow, enhancing the near-wall transport of momentum flux and thus reducing flow separation in the downstream flow. The maximum upstream velocity in the recirculation region is reduced by 38%, resulting in a much weaker recirculation zone- a direct consequence of the cartilaginous rings. CONCLUSIONS: These results highlight the importance of the cartilaginous rings in respiratory flow studies and the mechanism to reduce flow separation in trachea stenosis.

2.
Artigo em Inglês | MEDLINE | ID: mdl-29791262

RESUMO

BACKGROUND: Despite the prevailing assumption of "smooth trachea walls" in respiratory fluid dynamics research, recent investigations have demonstrated that cartilaginous rings in the trachea and main bronchi have a significant effect on the flow behavior and in particle deposition. However, there is not enough detailed information about the underlying physics of the interaction between the cartilage rings and the flow. MATERIALS AND METHODS: This study presents an experimental observation of a simplified Weibel-based model of the human trachea and bronchi with cartilaginous rings. A transparent model and refractive index-matching methods were used to observe the flow, particularly near the wall. The flow was seeded with tracers to perform particle image velocimetry and particle tracking velocimetry to quantify the effect the rings have on the flow near the trachea and bronchi walls. The experiments were carried out with a flow rate comparable with a resting state (trachea-based Reynolds number of ReD = 2650). RESULTS: The results present a previously unknown phenomenon in the cavities between the cartilaginous rings: a small recirculation is observed in the upstream side of the cavities throughout the trachea. This recirculation is due to the adverse pressure gradient created by the expansion, which traps particles within the ring cavity, thus affecting the treatment of patients suffering from lung disease and other respiratory conditions. CONCLUSIONS: The detection of recirculation zones in the cartilage ring cavities sheds light on the particle deposition mechanism and helps explain results from previous studies that have observed an enhancement of particle deposition in models with cartilage rings. These results bring to light the importance of including cartilage rings in experimental, numerical, and theoretical models to better understand particle deposition in the trachea and bronchi. In addition, the results provide scientists and medical staff with new insights for improving drug delivery.

3.
Proc Natl Acad Sci U S A ; 115(6): 1210-1214, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29367420

RESUMO

Flow separation and vortex shedding are some of the most common phenomena experienced by bluff bodies under relative motion with the surrounding medium. They often result in a recirculation bubble in regions with adverse pressure gradient, which typically reduces efficiency in vehicles and increases loading on structures. Here, the ability of an engineered coating to manipulate the large-scale recirculation region was tested in a separated flow at moderate momentum thickness Reynolds number, [Formula: see text] We show that the coating, composed of uniformly distributed cylindrical pillars with diverging tips, successfully reduces the size of, and shifts downstream, the separation bubble. Despite the so-called roughness parameter, [Formula: see text], falling within the hydrodynamic smooth regime, the coating is able to modulate the large-scale recirculating motion. Remarkably, this modulation does not induce noticeable changes in the near-wall turbulence levels. Supported with experimental data and theoretical arguments based on the averaged equations of motion, we suggest that the inherent mechanism responsible for the bubble modulation is essentially unsteady suction and blowing controlled by the increasing cross-section of the tips. The coating can be easily fabricated and installed and works under dry and wet conditions, increasing its potential impact on a diverse range of applications.

4.
Phys Rev Lett ; 117(16): 164501, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792377

RESUMO

We measure the absolute dispersion of clouds of monodisperse, phosphorescent droplets in turbulent air by means of high-speed image-intensified video recordings. Laser excitation allows the initial preparation of well-defined, pencil-shaped luminous droplet clouds in a completely nonintrusive way. We find that the dispersion of the clouds is faster than the dispersion of fluid elements. We speculate that preferential concentration of inertial droplet clouds is responsible for the enhanced dispersion.

5.
Sci Rep ; 6: 28753, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27353632

RESUMO

Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 µPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars.


Assuntos
Holografia , Dispositivos Lab-On-A-Chip , Microscopia , Estresse Mecânico , Holografia/instrumentação , Holografia/métodos , Microscopia/instrumentação , Microscopia/métodos
6.
J Biomech ; 49(9): 1601-1606, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27131850

RESUMO

We present a comparison of the flow characteristics in an idealized smooth trachea model and a second model which has a roughness simulating cartilaginous rings. We use refractive index-matched particle image velocimetry (PIV) to measure the velocity field in a two-generation model of the trachea and main bronchi. The flow rate has a trachea-based Reynolds number Re=2800, which is comparable to a resting state. Our results show considerable differences between both cases, the most important of which is the size and magnitude of recirculation zones at the inlet of both bronchi. The smooth case shows a larger separation bubble at the bronchi entrance, which may retain aerosols and have different effects on particles of different sizes. Furthermore, the smooth case displays a higher vorticity along the bottom walls of the bronchi, while a higher vorticity is seen along the trachea walls in the ׳ringed׳ model. These findings suggest that modeling the trachea and main bronchi as smooth tubes may not be justified, since the flow conditions in lower generations will be affected by these differences.


Assuntos
Brônquios/fisiologia , Cartilagem/anatomia & histologia , Traqueia/fisiologia , Humanos , Hidrodinâmica , Reologia
7.
Rev Sci Instrum ; 86(2): 023709, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25725854

RESUMO

Interferometric particle imaging provides a simple way to measure the probability density function (PDF) of droplet sizes from out-focus images. The optical setup is straightforward, but the interpretation of the data is a problem when particle images overlap. We propose a new way to analyze the images. The emphasis is not on a precise identification of droplets, but on obtaining a good estimate of the PDF of droplet sizes in the case of overlapping particle images. The algorithm is tested using synthetic and experimental data. We next use these methods to measure the PDF of droplet sizes produced by spinning disk aerosol generators. The mean primary droplet diameter agrees with predictions from the literature, but we find a broad distribution of satellite droplet sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...