Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 59(5): 1133-1150, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33909252

RESUMO

Brain-computer interfaces (BCI) based on steady-state visually evoked potentials (SSVEP) have been increasingly used in different applications, ranging from entertainment to rehabilitation. Filtering techniques are crucial to detect the SSVEP response since they can increase the accuracy of the system. Here, we present an analysis of a space-time filter based on the Minimum Variance Distortionless Response (MVDR). We have compared the performance of a BCI-SSVEP using the MVDR filter to other classical approaches: Common Average Reference (CAR) and Canonical Correlation Analysis (CCA). Moreover, we combined the CAR and MVDR techniques, totalling four filtering scenarios. Feature extraction was performed using Welch periodogram, Fast Fourier transform, and CCA (as extractor) with one and two harmonics. Feature selection was performed by forward wrappers, and a linear classifier was employed for discrimination. The main analyses were carried out over a database of ten volunteers, considering two cases: four and six visual stimuli. The results show that the BCI-SSVEP using the MVDR filter achieves the best performance among the analysed scenarios. Interestingly, the system's accuracy using the MVDR filter is practically constant even when the number of visual stimuli was increased, whereas degradation was observed for the other techniques.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia , Potenciais Evocados , Potenciais Evocados Visuais , Humanos , Estimulação Luminosa
2.
Int J Neural Syst ; 24(3): 1430009, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24552508

RESUMO

Modern unorganized machines--extreme learning machines and echo state networks--provide an elegant balance between processing capability and mathematical simplicity, circumventing the difficulties associated with the conventional training approaches of feedforward/recurrent neural networks (FNNs/RNNs). This work performs a detailed investigation of the applicability of unorganized architectures to the problem of seasonal streamflow series forecasting, considering scenarios associated with four Brazilian hydroelectric plants and four distinct prediction horizons. Experimental results indicate the pertinence of these models to the focused task.


Assuntos
Inteligência Artificial , Previsões , Estações do Ano , Algoritmos , Humanos , Redes Neurais de Computação
3.
Neural Netw ; 32: 292-302, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22386782

RESUMO

Echo state networks (ESNs) can be interpreted as promoting an encouraging compromise between two seemingly conflicting objectives: (i) simplicity of the resulting mathematical model and (ii) capability to express a wide range of nonlinear dynamics. By imposing fixed weights to the recurrent connections, the echo state approach avoids the well-known difficulties faced by recurrent neural network training strategies, but still preserves, to a certain extent, the potential of the underlying structure due to the existence of feedback loops within the dynamical reservoir. Moreover, the overall training process is relatively simple, as it amounts essentially to adapting the readout, which usually corresponds to a linear combiner. However, the linear nature of the output layer may limit the capability of exploring the available information, since higher-order statistics of the signals are not taken into account. In this work, we present a novel architecture for an ESN in which the linear combiner is replaced by a Volterra filter structure. Additionally, the principal component analysis technique is used to reduce the number of effective signals transmitted to the output layer. This idea not only improves the processing capability of the network, but also preserves the simplicity of the training process. The proposed architecture is then analyzed in the context of a set of representative information extraction problems, more specifically supervised and unsupervised channel equalization, and blind separation of convolutive mixtures. The obtained results, when compared to those produced by already proposed ESN versions, highlight the benefits brought by the novel network proposal and characterize it as a promising tool to deal with challenging signal processing tasks.


Assuntos
Algoritmos , Redes Neurais de Computação , Análise de Componente Principal , Inteligência Artificial , Sistemas Computacionais , Entropia , Modelos Lineares , Dinâmica não Linear , Processamento de Sinais Assistido por Computador , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA