Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 198(2): 107-119, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930014

RESUMO

Galactic cosmic rays (GCR) are among the main deterrents to manned space exploration. Currently, the most realistic way to reduce the dangers caused by GCR to acceptable levels is passive shielding. Light materials guarantee the strongest dose attenuation per unit mass. High-density polyethylene is considered the gold standard for radiation protection in space. Nevertheless, accelerator-based experimental campaigns already showed the advantages of more hydrogen-rich innovative shielding materials such as lithium hydride. The experimental campaigns of this work focused on the absorbed dose attenuation properties of lithium-based hydrides chemically stabilized with a paraffin matrix. Such materials were compared to pure lithium-based hydrides, polyethylene, structural materials such as spacecraft aluminum alloys and lithium batteries, and in situ shielding materials such as Moon regolith and its main components silicon and silicon dioxide. The experimental results were compared to simulations performed with PHITS, FLUKA, and Geant4, which are among the most used Monte Carlo codes for radiation protection in space. The simulations showed systematic differences and highlighted the pressing need for reliable nuclear cross-section models.


Assuntos
Radiação Cósmica , Proteção Radiológica , Voo Espacial , Radiação Cósmica/efeitos adversos , Lítio , Método de Monte Carlo , Doses de Radiação , Proteção Radiológica/métodos
2.
Radiat Res ; 191(2): 154-161, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30499384

RESUMO

The harmful effects of space radiation pose a serious health risk to astronauts participating in future long-term missions. Such radiation effects must be considered in the design phase of space vessels as well as in mission planning. Crew radioprotection during long periods in deep space (e.g., transit to Mars) represents a major challenge, especially because of the strong restrictions on the passive shielding load allowed on-board the vessel. Novel materials with better shielding performance compared to the "gold standard" high-density polyethylene are therefore greatly needed. Because of the high hydrogen content of hydrides, lithium hydride has been selected as a starting point for further studies of promising candidates to be used as passive shielding materials. In the current experimental campaign, the shielding performance of lithium hydride was assessed by measuring normalized dose, primary beam attenuation and neutron ambient dose equivalent using 430 MeV/u 12C, 600 MeV/u 12C and 228 MeV proton beams. The experimental data were then compared to predictions from the Monte Carlo transport codes PHITS and GRAS. The experimental results show an increased shielding effectiveness of lithium hydride compared to reference materials like polyethylene. For instance, the attenuation length for 600 MeV/u 12C primary particles in lithium hydride is approximately 20% shorter compared to polyethylene. Furthermore, the comparison results between both transport codes indicates that the standard Tripathi-based total reaction cross-section model of PHITS cannot accurately reproduce the presented experimental data, whereas GRAS shows reasonable agreement.


Assuntos
Radiação Cósmica , Compostos de Lítio/química , Proteção Radiológica/métodos , Hidrogênio/análise , Método de Monte Carlo , Doses de Radiação
3.
Radiat Res ; 190(5): 526-537, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30124374

RESUMO

The roadmap for space exploration foresees longer journeys and further excursions outside low-Earth orbit as well as the establishment of permanent outposts on other celestial bodies, such as the Moon or Mars. The design of spacecrafts and habitats depends heavily on the mission scenario and must consider the radiation protection properties of the structural components as well as dedicated shielding. In fact, short- and long-term effects caused by exposure to cosmic radiation are now considered among the main health risks of space travel. One of the current strategies is to find multifunctional materials that combine excellent mechanical properties with a high shielding effectiveness to minimize the overall load. In this work, the shielding effectiveness of a wide variety of single and multilayer materials of interest for different mission scenarios has been characterized. In the experimental campaign, reference and innovative materials, as well as simulants of Moon and Mars in situ resources, were irradiated with 1,000 MeV/u 4He, 430 MeV/u 12C and 962-972 MeV/u 56Fe. The results are presented in terms of Bragg curves and dose reduction per unit area density. To isolate the shielding effectiveness only due to nuclear fragmentation, a correction for the energy loss in the material is also considered. These findings indicate that the best shield is lithium hydride, which performs even better than polyethylene. However, the technical feasibility of shielding needs to be investigated. The classification of all materials in terms of shielding effectiveness is not influenced by the ion species, but the value changes dramatically depending on the beam energy. The output of this investigation represents a useful database for benchmarking Monte Carlo and deterministic transport codes used for space radiation transport calculations. These findings also contribute to recommendations for optimizing the design of space vessels and habitats in different radiation environments.


Assuntos
Luz , Proteção Radiológica/métodos , Radiação Cósmica , Humanos , Voo Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...