Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 55(7): 1164-1175, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37322110

RESUMO

During development, Hox genes are temporally activated according to their relative positions on their clusters, contributing to the proper identities of structures along the rostrocaudal axis. To understand the mechanism underlying this Hox timer, we used mouse embryonic stem cell-derived stembryos. Following Wnt signaling, the process involves transcriptional initiation at the anterior part of the cluster and a concomitant loading of cohesin complexes enriched on the transcribed DNA segments, that is, with an asymmetric distribution favoring the anterior part of the cluster. Chromatin extrusion then occurs with successively more posterior CTCF sites acting as transient insulators, thus generating a progressive time delay in the activation of more posterior-located genes due to long-range contacts with a flanking topologically associating domain. Mutant stembryos support this model and reveal that the presence of evolutionary conserved and regularly spaced intergenic CTCF sites controls the precision and the pace of this temporal mechanism.


Assuntos
Cromatina , DNA , Animais , Camundongos , Sítios de Ligação/genética , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromossomos/metabolismo , Genes Homeobox/genética
2.
Proc Natl Acad Sci U S A ; 116(27): 13424-13433, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209053

RESUMO

In many animal species with a bilateral symmetry, Hox genes are clustered either at one or at several genomic loci. This organization has a functional relevance, as the transcriptional control applied to each gene depends upon its relative position within the gene cluster. It was previously noted that vertebrate Hox clusters display a much higher level of genomic organization than their invertebrate counterparts. The former are always more compact than the latter, they are generally devoid of repeats and of interspersed genes, and all genes are transcribed by the same DNA strand, suggesting that particular factors constrained these clusters toward a tighter structure during the evolution of the vertebrate lineage. Here, we investigate the importance of uniform transcriptional orientation by engineering several alleles within the HoxD cluster, such as to invert one or several transcription units, with or without a neighboring CTCF site. We observe that the association between the tight structure of mammalian Hox clusters and their regulation makes inversions likely detrimental to the proper implementation of this complex genetic system. We propose that the consolidation of Hox clusters in vertebrates, including transcriptional polarity, evolved in conjunction with the emergence of global gene regulation via the flanking regulatory landscapes, to optimize a coordinated response of selected subsets of target genes in cis.


Assuntos
Genes Homeobox/genética , Família Multigênica/genética , Alelos , Animais , Fator de Ligação a CCCTC/metabolismo , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica/genética , Loci Gênicos/genética , Proteínas de Homeodomínio/genética , Mamíferos/genética , Camundongos , Inversão de Sequência , Fatores de Transcrição/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...