Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(45): 19566-9, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24142109

RESUMO

The fragmentation, initiated by photoexcitation as well as collisionally-induced excitation, of several retinal chromophores was studied in the gas phase. The chromophore in the protonated Schiff-base form (RPSB), essential for mammalian vision, shows a remarkably selective photoresponse. The selectivity of the gas-phase chromophore is triggered by a series of fast trans to cis isomerizations followed by a Diels-Alder cyclization with subsequent slow statistical fragmentation, leading to one specific fragment ion. The pattern of the final statistical fragmentation may be altered by chemical modifications of the chromophore. We propose that isomerizations play an important role in the photoresponse of gas-phase retinal chromophores and guide internal conversion through conical intersections. The role of protein interactions is then to control the specificity of the photoisomerization in the primary step of vision and possibly to diminish thermal noise by suppressing spontaneous isomerization by heat.


Assuntos
Gases/química , Processos Fotoquímicos , Prótons , Retinaldeído/química , Isomerismo , Bases de Schiff/química
2.
Phys Rev Lett ; 109(12): 128101, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005990

RESUMO

Photoelectron spectra of the deprotonated green fluorescent protein chromophore have been measured in the gas phase at several wavelengths within and beyond the S(0)-S(1) photoabsorption band of the molecule. The vertical detachment energy (VDE) was determined to be 2.68 ± 0.1 eV. The data show that the first electronically excited state is bound in the Franck-Condon region, and that electron emission proceeds through an indirect (resonant) electron-emission channel within the corresponding absorption band.


Assuntos
Compostos de Benzil/química , Proteínas de Fluorescência Verde/química , Imidazolinas/química , Modelos Químicos , Simulação de Dinâmica Molecular , Espectroscopia Fotoeletrônica/métodos
3.
J Chem Phys ; 136(1): 014307, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22239781

RESUMO

Photodissociation lifetimes and fragment channels of gas-phase, protonated YA(n) (n = 1,2) peptides and their dimers were measured with 266 nm photons. The protonated monomers were found to have a fast dissociation channel with an exponential lifetime of ~200 ns while the protonated dimers show an additional slow dissociation component with a lifetime of ~2 µs. Laser power dependence measurements enabled us to ascribe the fast channel in the monomer and the slow channel in the dimer to a one-photon process, whereas the fast dimer channel is from a two-photon process. The slow (1 photon) dissociation channel in the dimer was found to result in cleavage of the H-bonds after energy transfer through these H-bonds. In general, the dissociation of these protonated peptides is non-prompt and the decay time was found to increase with the size of the peptides. Quantum RRKM calculations of the microcanonical rate constants also confirmed a statistical nature of the photodissociation processes in the dipeptide monomers and dimers. The classical RRKM expression gives a rate constant as an analytical function of the number of active vibrational modes in the system, estimated separately on the basis of the equipartition theorem. It demonstrates encouraging results in predicting fragmentation lifetimes of protonated peptides. Finally, we present the first experimental evidence for a photo-induced conversion of tyrosine-containing peptides into monocyclic aromatic hydrocarbon along with a formamide molecule both found in space.


Assuntos
Peptídeos/química , Prótons , Dimerização , Método de Monte Carlo , Processos Fotoquímicos , Teoria Quântica
4.
Proteins ; 78(3): 614-22, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19787771

RESUMO

The quantum mechanical-molecular mechanical (QM/MM) theory was applied to calculate accurate structural parameters, vibrational and optical spectra of bathorhodopsin (BATHO), one of the primary photoproducts of the functional cycle of the visual pigment rhodopsin (RHO), and to characterize reaction routes from RHO to BATHO. The recently resolved crystal structure of BATHO (PDBID: 2G87) served as an initial source of coordinates of heavy atoms. Protein structures in the ground electronic state and vibrational frequencies were determined by using the density functional theory in the PBE0/cc-pVDZ approximation for the QM part and the AMBER force field parameters in the MM part. Calculated and assigned vibrational spectra of both model protein systems, BATHO and RHO, cover three main regions referring to the hydrogen-out-of-plan (HOOP) motion, the C==C ethylenic stretches, and the C--C single-bond stretches. The S(0)-S(1) electronic excitation energies of the QM part, including the chromophore group in the field of the protein matrix, were estimated by using the advanced quantum chemistry methods. The computed structural parameters as well as the spectral bands match perfectly the experimental findings. A structure of the transition state on the S(0) potential energy surface for the ground electronic state rearrangement from RHO to BATHO was located proving a possible route of the thermal protein activation to the primary photoproduct.


Assuntos
Modelos Químicos , Rodopsina/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica , Teoria Quântica , Análise Espectral Raman
5.
Phys Chem Chem Phys ; 11(43): 9996-10002, 2009 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19865751

RESUMO

We report on gas-phase experimental and theoretical studies on the neutral form of the green-fluorescent protein (GFP) chromophore using six different models, each carrying a spectator positive charge. Theoretical studies were carried out to quantify the effect of the spectator charge on the absorption maximum of the true neutral. The study also includes models having the possibility of forming intra-molecular hydrogen bonds, and their effect on the absorption profile is analyzed. The charge redistribution caused by a strong intra-molecular hydrogen bond was found to give rise to a red shift in going from non-hydrogen bonded to hydrogen bonded models. For the non-hydrogen bonded models, the length of the side chain as well as the group carrying the spectator charge, was varied to explore the possibility of shifts in absorption maximum due to these variations. No shifts were observed. The implications of these results in tuning the absorption maximum of the neutral form of the GFP chromophores are discussed.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Modelos Químicos , Vácuo , Absorção , Ligação de Hidrogênio , Processos Fotoquímicos
6.
J Chem Phys ; 120(8): 3732-43, 2004 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15268536

RESUMO

A new hybrid QM/DIM approach aimed at describing equilibrium structures and spectroscopic properties of medium size mixed molecular clusters is developed. This methodology is applied to vibrational spectra of hydrogen chloride and hydrogen fluoride clusters with up to four monomer molecules embedded in argon shells Arn(H(Cl/F))m (n = 1-62, m = 1-4). The hydrogen halide complexes (QM part) are treated at the MP2/aug-cc-pVTZ level, while the interaction between HX molecules and Ar atoms (MM part) is described in terms of the semiempirical DIM methodology, based on the proper mixing between neutral and ionic states of the system [Grigorenko et al., J. Chem. Phys. 104, 5510 (1996)]. A detailed analysis of the resulting topology of the QM/DIM potential energy (hyper-)surface in the triatomic subsystem Ar-HX reveals more pronounced nonadditive atomic induction and dispersion contributions to the total interaction energy in the case of the Ar-HCl system. An extension of the original analytical DIM-based potential in the frame of the present model as well as the current limitations of the method are discussed. A modified algorithm for the gradient geometry optimization, along with partly analytical force constant matrix evaluation, is developed to treat large cages of argon atoms around molecular clusters. Calculated frequency redshifts of HX stretching vibrations in the mixed clusters relative to the isolated hydrogen-bonded complexes are in good agreement with experimental findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...