Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 131: 106951, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36796203

RESUMO

Multi-material additive manufacturing is receiving increasing attention in the field of acoustics, in particular towards the design of micro-architectured periodic media used to achieve programmable ultrasonic responses. To unravel the effect of the material properties and spatial arrangement of the printed constituents, there is an unmet need in developing wave propagation models for prediction and optimization purposes. In this study, we propose to investigate the transmission of longitudinal ultrasound waves through 1D-periodic biphasic media, whose constituent materials are viscoelastic. To this end, Bloch-Floquet analysis is applied in the frame of viscoelasticity, with the aim of disentangling the relative contributions of viscoelasticity and periodicity on ultrasound signatures, such as dispersion, attenuation, and bandgaps localization. The impact of the finite size nature of these structures is then assessed by using a modeling approach based on the transfer matrix formalism. Finally, the modeling outcomes, i.e., frequency-dependent phase velocity and attenuation, are confronted with experiments conducted on 3D-printed samples, which exhibit a 1D periodicity at length-scales of a few hundreds of micrometers. Altogether, the obtained results shed light on the modeling characteristics to be considered when predicting the complex acoustic behavior of periodic media in the ultrasonic regime.

2.
J Acoust Soc Am ; 152(3): 1901, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36182322

RESUMO

Photopolymer-based additive manufacturing has received increasing attention in the field of acoustics over the past decade, specifically towards the design of tissue-mimicking phantoms and passive components for ultrasound imaging and therapy. While these applications rely on an accurate characterization of the longitudinal bulk properties of the materials, emerging applications involving periodic micro-architectured media also require the knowledge of the transverse bulk properties to achieve the desired acoustic behavior. However, a robust knowledge of these properties is still lacking for such attenuating materials. Here, we report on the longitudinal and transverse bulk properties, i.e., frequency-dependent phase velocities and attenuations, of photopolymer materials, which were characterized in the MHz regime using a double through-transmission method in oblique incidence. Samples were fabricated using two different printing technologies (stereolithography and polyjet) to assess the impact of two important factors of the manufacturing process: curing and material mixing. Overall, the experimentally observed dispersion and attenuation could be satisfactorily modeled using a power law attenuation to identify a reduced number of intrinsic ultrasound parameters. As a result, these parameters, and especially those reflecting transverse bulk properties, were shown to be very sensitive to slight variations of the manufacturing process.

3.
Adv Exp Med Biol ; 1364: 55-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508871

RESUMO

Recent progress in quantitative ultrasound have sparked increasing interest towards the measurement of long cortical bones (e.g., radius or tibia), because their ability to sustain loading and resist fractures is known to be related to their mechanical properties at different length scales. In particular, applying guided waves for the assessment of cortical bone is inspired by widely used techniques developed earlier in the field of nondestructive testing and evaluation of different waveguide structures. This approach is based on the experimental evidence that the cortex of long bones can act as a natural waveguide for ultrasound, despite its irregular geometry, attenuation, and heterogeneous material properties. Because guided waves could yield the characterization of several bone properties (e.g., cortical thickness, anisotropic stiffness or porosity) at the mesoscopic level by fitting the dispersion characteristics of a waveguide model to the measured dispersion curves (i.e., solving an inverse problem), this method has a strong clinical potential as a tool for bone status assessment. This chapter revisits the roadmap that allowed the so-called bidirectional axial transmission technique to progress from a pure laboratory concept to a diagnostic tool of clinical interest over the second decade of the twenty-first century and discusses the current clinical challenges associated with cortical bone characterization by ultrasound guided waves.


Assuntos
Osso e Ossos , Osso Cortical , Osso e Ossos/diagnóstico por imagem , Osso Cortical/diagnóstico por imagem , Porosidade , Tíbia/diagnóstico por imagem , Ultrassonografia
4.
J Acoust Soc Am ; 151(3): 1490, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35364905

RESUMO

Functional grading is a distinctive feature adopted by nature to improve the transition between tissues that present a strong mismatch in mechanical properties, a relevant example being the tendon-to-bone attachment. Recent progress in multi-material additive manufacturing now allows for the design and fabrication of bioinspired functionally graded soft-to-hard composites. Nevertheless, this emerging technology depends on several design variables, including both material and mechanistic ingredients, that are likely to affect the mechanical performance of such composites. In this paper, a model-based approach is developed to describe the interaction of ultrasound waves with homogeneous and heterogeneous additively manufactured samples, which respectively display a variation either of the material ingredients (e.g., ratio of the elementary constituents) or of their spatial arrangement (e.g., functional gradients, damage). Measurements are performed using longitudinal bulk waves, which are launched and detected using a linear transducer array. First, model is calibrated by exploiting the signals measured on the homogeneous samples, which allow identifying relationships between the model parameters and the material composition. Second, the model is validated by comparing the signals measured on the heterogeneous samples with those predicted numerically. Overall, the reported results pave the way for characterizing and optimizing multi-material systems that display complex bioinspired features.


Assuntos
Osso e Ossos , Ultrassonografia
6.
Nat Commun ; 12(1): 3597, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127659

RESUMO

Nanoporosity in silicon leads to completely new functionalities of this mainstream semiconductor. A difficult to assess mechanics has however significantly limited its application in fields ranging from nanofluidics and biosensorics to drug delivery, energy storage and photonics. Here, we present a study on laser-excited elastic guided waves detected contactless and non-destructively in dry and liquid-infused single-crystalline porous silicon. These experiments reveal that the self-organised formation of 100 billions of parallel nanopores per square centimetre cross section results in a nearly isotropic elasticity perpendicular to the pore axes and an 80% effective stiffness reduction, altogether leading to significant deviations from the cubic anisotropy observed in bulk silicon. Our thorough assessment of the wafer-scale mechanics of nanoporous silicon provides the base for predictive applications in robust on-chip devices and evidences that recent breakthroughs in laser ultrasonics open up entirely new frontiers for in-situ, non-destructive mechanical characterisation of dry and liquid-functionalised porous materials.

7.
J Acoust Soc Am ; 143(2): 1138, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29495739

RESUMO

A method to recover the elastic properties, thickness, or orientation of the principal symmetry axes of anisotropic plates is presented. This method relies on the measurements of multimode guided waves, which are launched and detected in arbitrary directions along the plate using a multi-element linear transducer array driven by a programmable electronic device. A model-based inverse problem solution is proposed to optimally recover the properties of interest. The main contribution consists in defining an objective function built from the dispersion equation, which allows accounting for higher-order modes without the need to pair each experimental data point to a specific guided mode. This avoids the numerical calculation of the dispersion curves and errors in the mode identification. Compared to standard root-finding algorithms, the computational gain of the procedure is estimated to be on the order of 200. The objective function is optimized using genetic algorithms, which allow identifying from a single out-of-symmetry axis measurement the full set of anisotropic elastic coefficients and either the plate thickness or the propagation direction. The efficiency of the method is demonstrated using data measured on materials with different symmetry classes. Excellent agreement is found between the reported estimates and reference values from the literature.

8.
Sci Rep ; 7: 43628, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256568

RESUMO

Recent bone quantitative ultrasound approaches exploit the multimode waveguide response of long bones for assessing properties such as cortical thickness and stiffness. Clinical applications remain, however, challenging, as the impact of soft tissue on guided waves characteristics is not fully understood yet. In particular, it must be clarified whether soft tissue must be incorporated in waveguide models needed to infer reliable cortical bone properties. We hypothesize that an inverse procedure using a free plate model can be applied to retrieve the thickness and stiffness of cortical bone from experimental data. This approach is first validated on a series of laboratory-controlled measurements performed on assemblies of bone- and soft tissue mimicking phantoms and then on in vivo measurements. The accuracy of the estimates is evaluated by comparison with reference values. To further support our hypothesis, these estimates are subsequently inserted into a bilayer model to test its accuracy. Our results show that the free plate model allows retrieving reliable waveguide properties, despite the presence of soft tissue. They also suggest that the more sophisticated bilayer model, although it is more precise to predict experimental data in the forward problem, could turn out to be hardly manageable for solving the inverse problem.


Assuntos
Osso e Ossos/diagnóstico por imagem , Fenômenos Mecânicos , Ultrassonografia , Algoritmos , Biomimética/métodos , Densidade Óssea , Osso Cortical/diagnóstico por imagem , Humanos , Modelos Biológicos , Imagens de Fantasmas , Ondas Ultrassônicas , Ultrassonografia/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-27392349

RESUMO

Cortical bone loss is not fully assessed by the current X-ray methods, and there is an unmet need in identifying women at risk of osteoporotic fracture, who should receive a treatment. The last decade has seen the emergence of the ultrasound (US) axial transmission (AT) techniques to assess a cortical bone. Recent AT techniques exploit the multimode waveguide response of the long bones such as the radius. A recent ex vivo study by our group evidenced that a multimode AT approach can yield simultaneous estimates of cortical thickness (Ct.Th) and stiffness. The aim of this paper is to move one step forward to evaluate the feasibility of measuring multimode guided waves (GW) in vivo and to infer from it cortical thickness. Measurements were taken on the forearm of 14 healthy subjects with the goal to test the accuracy of the estimated thickness using the bidirectional AT method implemented on a dedicated 1-MHz linear US array. This setup allows determining in vivo the dispersion curves of GW transmitted in the cortical layer of the radius. An inverse procedure based on the comparison between the measured and modeled dispersion curves predicted by a 2-D transverse isotropic free plate waveguide model allowed an estimation of cortical thickness, despite the presence of soft tissue. The Ct.Th values were validated by comparison with the site-matched estimates derived from X-ray high-resolution peripheral quantitative computed tomography. Results showed a significant correlation between both measurements ( r2 = 0.7 , , and [Formula: see text] mm). This pilot study demonstrates the potential of bidirectional AT for the in vivo assessment of cortical thickness, a bone strength-related factor.


Assuntos
Osso Cortical/diagnóstico por imagem , Rádio (Anatomia)/diagnóstico por imagem , Ultrassonografia , Densidade Óssea , Feminino , Humanos , Projetos Piloto
10.
Artigo em Inglês | MEDLINE | ID: mdl-22828840

RESUMO

The understanding of internal processes that affect the changes of consistency of soft tissue is a challenging problem. An ultrasound-monitoring Petri dish has been designed to monitor the evolution of relevant mechanical parameters during engineered tissue formation processes in real time. A better understanding of the measured ultrasonic signals required the use of numerical models of the ultrasound-tissue interactions. The extraction of relevant data and its evolution with sufficient sensitivity and accuracy is addressed by applying well-known signal processing techniques to both the experimental and numerically predicted measurements. In addition, a stochastic model-class selection formulation is used to rank which of the proposed interaction models are more plausible. The sensitivity of the system is verified by monitoring a gelation process.


Assuntos
Algoritmos , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Modelos Estatísticos , Animais , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...