Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1352757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455730

RESUMO

The timing of floral budbreak in apple has a significant effect on fruit production and quality. Budbreak occurs as a result of a complex molecular mechanism that relies on accurate integration of external environmental cues, principally temperature. In the pursuit of understanding this mechanism, especially with respect to aiding adaptation to climate change, a QTL at the top of linkage group (LG) 9 has been identified by many studies on budbreak, but the genes underlying it remain elusive. Here, together with a dessert apple core collection of 239 cultivars, we used a targeted capture sequencing approach to increase SNP resolution in apple orthologues of known or suspected A. thaliana flowering time-related genes, as well as approximately 200 genes within the LG9 QTL interval. This increased the 275 223 SNP Axiom® Apple 480 K array dataset by an additional 40 857 markers. Robust GWAS analyses identified MdPRX10, a peroxidase superfamily gene, as a strong candidate that demonstrated a dormancy-related expression pattern and down-regulation in response to chilling. In-silico analyses also predicted the residue change resulting from the SNP allele associated with late budbreak could alter protein conformation and likely function. Late budbreak cultivars homozygous for this SNP allele also showed significantly up-regulated expression of C-REPEAT BINDING FACTOR (CBF) genes, which are involved in cold tolerance and perception, compared to reference cultivars, such as Gala. Taken together, these results indicate a role for MdPRX10 in budbreak, potentially via redox-mediated signaling and CBF gene regulation. Moving forward, this provides a focus for developing our understanding of the effects of temperature on flowering time and how redox processes may influence integration of external cues in dormancy pathways.

2.
PLoS One ; 19(1): e0295043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232071

RESUMO

Crop-to-wild gene flow is a mechanism process widely documented, both in plants and animals. This can have positive or negative impacts on the evolution of admixed populations in natural environments, yet the phenomenon is still misunderstood in long-lived woody species, contrary to short-lived crops. Wild olive Olea europaea L. occurs in the same eco-geographical range as domesticated olive, i.e. the Mediterranean Basin (MB). Moreover, it is an allogamous and anemophilous species whose seeds are disseminated by birds, i.e. factors that drive gene flow between crops and their wild relatives. Here we investigated the genetic structure of western MB wild olive populations in natural environments assuming a homogenous gene pool with limited impact of cultivated alleles, as previously suggested. We used a target sequencing method based on annotated genes from the Farga reference genome to analyze 27 western MB olive tree populations sampled in natural environments in France, Spain and Morocco. We also target sequenced cultivated olive tree accessions from the Worldwide Olive Germplasm Bank of Marrakech and Porquerolles and from an eastern MB wild olive tree population. We combined PCA, sNMF, pairwise FST and TreeMix and clearly identified genuine wild olive trees throughout their natural distribution range along a north-south gradient including, for the first time, in southern France. However, contrary to our assumption, we highlighted more admixed than genuine wild olive trees. Our results raise questions regarding the admixed population evolution pattern in this environment, which might be facilitated by crop-to-wild gene flow.


Assuntos
Olea , Olea/genética , Geografia , Marrocos , Fluxo Gênico , Genômica , Variação Genética
3.
Plant Commun ; 3(5): 100330, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35617961

RESUMO

Vanilla planifolia, the species cultivated to produce one of the world's most popular flavors, is highly prone to partial genome endoreplication, which leads to highly unbalanced DNA content in cells. We report here the first molecular evidence of partial endoreplication at the chromosome scale by the assembly and annotation of an accurate haplotype-phased genome of V. planifolia. Cytogenetic data demonstrated that the diploid genome size is 4.09 Gb, with 16 chromosome pairs, although aneuploid cells are frequently observed. Using PacBio HiFi and optical mapping, we assembled and phased a diploid genome of 3.4 Gb with a scaffold N50 of 1.2 Mb and 59 128 predicted protein-coding genes. The atypical k-mer frequencies and the uneven sequencing depth observed agreed with our expectation of unbalanced genome representation. Sixty-seven percent of the genes were scattered over only 30% of the genome, putatively linking gene-rich regions and the endoreplication phenomenon. By contrast, low-coverage regions (non-endoreplicated) were rich in repeated elements but also contained 33% of the annotated genes. Furthermore, this assembly showed distinct haplotype-specific sequencing depth variation patterns, suggesting complex molecular regulation of endoreplication along the chromosomes. This high-quality, anchored assembly represents 83% of the estimated V. planifolia genome. It provides a significant step toward the elucidation of this complex genome. To support post-genomics efforts, we developed the Vanilla Genome Hub, a user-friendly integrated web portal that enables centralized access to high-throughput genomic and other omics data and interoperable use of bioinformatics tools.


Assuntos
Vanilla , Cromossomos , Endorreduplicação , Tamanho do Genoma , Haplótipos , Vanilla/genética
4.
NAR Genom Bioinform ; 3(3): lqab088, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34568824

RESUMO

RapGreen is a modular software package targeted at scientists handling large datasets for phylogenetic analysis. Its primary function is the graphical visualization and exploration of large trees. In addition, RapGreen offers a tree pattern search function to seek evolutionary scenarios among large collections of phylogenetic trees. Other functionalities include tree reconciliation with a given species tree: the detection of duplication or loss events during evolution and tree rooting. Last but not least, RapGreen features the ability to integrate heterogeneous data while visualizing and otherwise analyzing phylogenetic trees.

5.
Ann Bot ; 127(6): 827-840, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33637991

RESUMO

BACKGROUND AND AIMS: Modern sugarcane cultivars (Saccharum spp.) are high polyploids, aneuploids (2n = ~12x = ~120) derived from interspecific hybridizations between the domesticated sweet species Saccharum officinarum and the wild species S. spontaneum. METHODS: To analyse the architecture and origin of such a complex genome, we analysed the sequences of all 12 hom(oe)ologous haplotypes (BAC clones) from two distinct genomic regions of a typical modern cultivar, as well as the corresponding sequence in Miscanthus sinense and Sorghum bicolor, and monitored their distribution among representatives of the Saccharum genus. KEY RESULTS: The diversity observed among haplotypes suggested the existence of three founding genomes (A, B, C) in modern cultivars, which diverged between 0.8 and 1.3 Mya. Two genomes (A, B) were contributed by S. officinarum; these were also found in its wild presumed ancestor S. robustum, and one genome (C) was contributed by S. spontaneum. These results suggest that S. officinarum and S. robustum are derived from interspecific hybridization between two unknown ancestors (A and B genomes). The A genome contributed most haplotypes (nine or ten) while the B and C genomes contributed one or two haplotypes in the regions analysed of this typical modern cultivar. Interspecific hybridizations likely involved accessions or gametes with distinct ploidy levels and/or were followed by a series of backcrosses with the A genome. The three founding genomes were found in all S. barberi, S. sinense and modern cultivars analysed. None of the analysed accessions contained only the A genome or the B genome, suggesting that representatives of these founding genomes remain to be discovered. CONCLUSIONS: This evolutionary model, which combines interspecificity and high polyploidy, can explain the variable chromosome pairing affinity observed in Saccharum. It represents a major revision of the understanding of Saccharum diversity.


Assuntos
Saccharum , Genoma de Planta/genética , Genômica , Haplótipos/genética , Poliploidia , Saccharum/genética
6.
Commun Biol ; 4(1): 105, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483627

RESUMO

Coconut (Cocos nucifera) is the emblematic palm of tropical coastal areas all around the globe. It provides vital resources to millions of farmers. In an effort to better understand its evolutionary history and to develop genomic tools for its improvement, a sequence draft was recently released. Here, we present a dense linkage map (8402 SNPs) aiming to assemble the large genome of coconut (2.42 Gbp, 2n = 32) into 16 pseudomolecules. As a result, 47% of the sequences (representing 77% of the genes) were assigned to 16 linkage groups and ordered. We observed segregation distortion in chromosome Cn15, which is a signature of strong selection among pollen grains, favouring the maternal allele. Comparing our results with the genome of the oil palm Elaeis guineensis allowed us to identify major events in the evolutionary history of palms. We find that coconut underwent a massive transposable element invasion in the last million years, which could be related to the fluctuations of sea level during the glaciations at Pleistocene that would have triggered a population bottleneck. Finally, to better understand the facultative halophyte trait of coconut, we conducted an RNA-seq experiment on leaves to identify key players of signaling pathways involved in salt stress response. Altogether, our findings represent a valuable resource for the coconut breeding community.


Assuntos
Evolução Biológica , Cocos/genética , Genoma de Planta , Tolerância ao Sal/genética , Transdução de Sinais/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Elementos de DNA Transponíveis , Técnicas de Genotipagem , Padrões de Referência
7.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545790

RESUMO

The natural rubber biosynthetic pathway is well described in Hevea, although the final stages of rubber elongation are still poorly understood. Small Rubber Particle Proteins and Rubber Elongation Factors (SRPPs and REFs) are proteins with major function in rubber particle formation and stabilization. Their corresponding genes are clustered on a scaffold1222 of the reference genomic sequence of the Hevea brasiliensis genome. Apart from gene expression by transcriptomic analyses, to date, no deep analyses have been carried out for the genomic environment of SRPPs and REFs loci. By integrative analyses on transposable element annotation, small RNAs production and gene expression, we analysed their role in the control of the transcription of rubber biosynthetic genes. The first in-depth annotation of TEs (Transposable Elements) and their capacity to produce TE-derived siRNAs (small interfering RNAs) is presented, only possible in the Hevea brasiliensis clone PB 260 for which all data are available. We observed that 11% of genes are located near TEs and their presence may interfere in their transcription at both genetic and epigenetic level. We hypothesized that the genomic environment of rubber biosynthesis genes has been shaped by TE and TE-derived siRNAs with possible transcriptional interference on their gene expression. We discussed possible functionalization of TEs as enhancers and as donors of alternative transcription start sites in promoter sequences, possibly through the modelling of genetic and epigenetic landscapes.


Assuntos
Vias Biossintéticas , Perfilação da Expressão Gênica/métodos , Hevea/metabolismo , Borracha/metabolismo , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Hevea/genética , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Análise de Sequência de RNA
8.
Front Plant Sci ; 11: 224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194601

RESUMO

Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.

9.
Plant Sci ; 291: 110366, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928673

RESUMO

A RARSeq based Association mapping study was performed in a population of 104 Elaeis oleifera x E. guineensis hybrids of five origins with the aim of finding functional markers associated to six productive and 19 oil quality traits. For this purpose mRNA of each genotype was isolated and double stranded cDNA was synthesized. Following digestion with two restriction enzymes and adapter ligation, a size selected pool of barcoded amplicons was produced and sequenced using Illumina MiSeq. The obtained sequences were processed with a "snakemake" pipeline, filtered and missing values were imputed. For all traits except two significant effects of the origin was observed. Genetic diversity analyses revealed high variability within origins and an excess of heterozygosity in the population. Two GLM models with Q matrix or PCA matrix as covariates and two MLM models incorporating in addition a Kinship matrix were tested for genotype-phenotype associations using GAPIT software. Using unadjusted p values (< 0.01) 78 potential associations were detected involving 25 SNP and 20 traits. When applying FDR multiple testing with p < 0.05, 25 significant associations remained involving eight SNP and six quality traits. Four SNP were located in genes with a potential relevant biological meaning.


Assuntos
Arecaceae/genética , Genótipo , Hibridização Genética , Óleo de Palmeira/química , Polimorfismo de Nucleotídeo Único , Arecaceae/metabolismo , Melhoramento Vegetal
10.
Plants (Basel) ; 8(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561627

RESUMO

Oil palm production is gaining importance in Central and South America. However, the main species Elaeis guineensis (Eg) is suffering severely from bud rod disease, restricting the potential cultivation areas. Therefore, breeding companies have started to work with interspecific Elaeis oleifera × Eg (Eo × Eg) hybrids which are tolerant to this disease. We performed association studies between candidate gene (CG) single nucleotide polymorphisms (SNP) and six production and 19 oil quality traits in 198 accessions of interspecific oil palm hybrids from five different origins. For this purpose, barcoded amplicons of initially 167 CG were produced from each genotype and sequenced with Ion Torrent. After sequence cleaning 115 SNP remained targeting 62 CG. The influence of the origins on the different traits was analyzed and a genetic diversity study was performed. Two generalized linear models (GLM) with principle component analysis (PCA) or structure (Q) matrixes as covariates and two mixed linear models (MLM) which included in addition a Kinship (K) matrix were applied for association mapping using GAPIT. False discovery rate (FDR) multiple testing corrections were applied in order to avoid Type I errors. However, with FDR adjusted p values no significant associations between SNP and traits were detected. If using unadjusted p values below 0.05, seven of the studied CG showed potential associations with production traits, while 23 CG may influence different quality traits. Under these conditions the current approach and the detected candidate genes could be exploited for selecting genotypes with superior CG alleles in Marker Assisted Selection systems.

11.
Data Brief ; 22: 794-811, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30766900

RESUMO

The myrtle rust disease, caused by the fungus Austropuccinia psidii, infects a wide range of host species within the Myrtaceae family worldwide. Since its first report in 2013 in New Caledonia, it was found on various types of native environments where Myrtaceae are the dominant or codominant species, as well as in several commercial nurseries. It is now considered as a significant threat to ecosystems biodiversity and Myrtaceae-related economy. The use of predictive molecular markers for resistance against myrtle rust is currently the most cost-effective and ecological approach to control the disease. Such an approach for neo Caledonian endemic Myrtaceae species was not possible because of the lack of genomic resources. The recent advancement in new generation sequencing technologies accompanied with relevant bioinformatics tools now provide new research opportunity for work in non-model organism at the transcriptomic level. The present study focuses on transcriptome analysis on three Myrtaceae species endemic to New Caledonia (Arillastrum gummiferum, Syzygium longifolium and Tristaniopsis glauca) that display contrasting responses to the pathogen (non-infected vs infected). Differential gene expression (DGE) and variant calling analysis were conducted on each species. We combined a dual approach by using 1) the annotated reference genome of a related Myrtaceae species (Eucalyptus grandis) and 2) a de novo transcriptomes of each species.

12.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-29568489

RESUMO

As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR).

13.
BMC Genomics ; 18(1): 839, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096603

RESUMO

BACKGROUND: There is great potential for the genetic improvement of oil palm yield. Traditional progeny tests allow accurate selection but limit the number of individuals evaluated. Genomic selection (GS) could overcome this constraint. We estimated the accuracy of GS prediction of seven oil yield components using A × B hybrid progeny tests with almost 500 crosses for training and 200 crosses for independent validation. Genotyping-by-sequencing (GBS) yielded +5000 single nucleotide polymorphisms (SNPs) on the parents of the crosses. The genomic best linear unbiased prediction method gave genomic predictions using the SNPs of the training and validation sets and the phenotypes of the training crosses. The practical impact was illustrated by quantifying the additional bunch production of the crosses selected in the validation experiment if genomic preselection had been applied in the parental populations before progeny tests. RESULTS: We found that prediction accuracies for cross values plateaued at 500 to 2000 SNPs, with high (0.73) or low (0.28) values depending on traits. Similar results were obtained when parental breeding values were predicted. GS was able to capture genetic differences within parental families, requiring at least 2000 SNPs with less than 5% missing data, imputed using pedigrees. Genomic preselection could have increased the selected hybrids bunch production by more than 10%. CONCLUSIONS: Finally, preselection for yield components using GBS is the first possible application of GS in oil palm. This will increase selection intensity, thus improving the performance of commercial hybrids. Further research is required to increase the benefits from GS, which should revolutionize oil palm breeding.


Assuntos
Arecaceae/genética , Genômica , Técnicas de Genotipagem , Hibridização Genética , Análise de Sequência , Polimorfismo de Nucleotídeo Único
14.
Gigascience ; 6(11): 1-11, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048487

RESUMO

Coconut palm (Cocos nucifera,2n = 32), a member of genus Cocos and family Arecaceae (Palmaceae), is an important tropical fruit and oil crop. Currently, coconut palm is cultivated in 93 countries, including Central and South America, East and West Africa, Southeast Asia and the Pacific Islands, with a total growth area of more than 12 million hectares [1]. Coconut palm is generally classified into 2 main categories: "Tall" (flowering 8-10 years after planting) and "Dwarf" (flowering 4-6 years after planting), based on morphological characteristics and breeding habits. This Palmae species has a long growth period before reproductive years, which hinders conventional breeding progress. In spite of initial successes, improvements made by conventional breeding have been very slow. In the present study, we obtained de novo sequences of the Cocos nucifera genome: a major genomic resource that could be used to facilitate molecular breeding in Cocos nucifera and accelerate the breeding process in this important crop. A total of 419.67 gigabases (Gb) of raw reads were generated by the Illumina HiSeq 2000 platform using a series of paired-end and mate-pair libraries, covering the predicted Cocos nucifera genome length (2.42 Gb, variety "Hainan Tall") to an estimated ×173.32 read depth. A total scaffold length of 2.20 Gb was generated (N50 = 418 Kb), representing 90.91% of the genome. The coconut genome was predicted to harbor 28 039 protein-coding genes, which is less than in Phoenix dactylifera (PDK30: 28 889), Phoenix dactylifera (DPV01: 41 660), and Elaeis guineensis (EG5: 34 802). BUSCO evaluation demonstrated that the obtained scaffold sequences covered 90.8% of the coconut genome and that the genome annotation was 74.1% complete. Genome annotation results revealed that 72.75% of the coconut genome consisted of transposable elements, of which long-terminal repeat retrotransposons elements (LTRs) accounted for the largest proportion (92.23%). Comparative analysis of the antiporter gene family and ion channel gene families between C. nucifera and Arabidopsis thaliana indicated that significant gene expansion may have occurred in the coconut involving Na+/H+ antiporter, carnitine/acylcarnitine translocase, potassium-dependent sodium-calcium exchanger, and potassium channel genes. Despite its agronomic importance, C. nucifera is still under-studied. In this report, we present a draft genome of C. nucifera and provide genomic information that will facilitate future functional genomics and molecular-assisted breeding in this crop species.


Assuntos
Cocos/genética , Genoma de Planta , Anotação de Sequência Molecular
15.
PLoS One ; 12(3): e0173300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28334050

RESUMO

The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/).


Assuntos
Arecaceae/genética , Cocos/genética , Genoma de Planta/genética , Transcriptoma/genética , Genômica/métodos , Repetições de Microssatélites/genética
16.
Nucleic Acids Res ; 43(Database issue): D1028-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392413

RESUMO

The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager.


Assuntos
Coffea/genética , Bases de Dados de Ácidos Nucleicos , Genoma de Planta , Coffea/metabolismo , Perfilação da Expressão Gênica , Genômica , Redes e Vias Metabólicas/genética , Polimorfismo de Nucleotídeo Único , Software , Sintenia
17.
Science ; 345(6201): 1181-4, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25190796

RESUMO

Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.


Assuntos
Cafeína/genética , Coffea/genética , Evolução Molecular , Genoma de Planta , Metiltransferases/fisiologia , Proteínas de Plantas/fisiologia , Cafeína/biossíntese , Coffea/classificação , Metiltransferases/genética , Filogenia , Proteínas de Plantas/genética
18.
New Phytol ; 202(3): 986-1000, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24716518

RESUMO

Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling.


Assuntos
Etilenos/biossíntese , Duplicação Gênica , Genes de Plantas , Família Multigênica , Musa/genética , Filogenia , Transdução de Sinais/genética , Sequência Conservada/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Funções Verossimilhança , Liases/metabolismo , Musa/enzimologia , Seleção Genética
19.
J Virol ; 87(15): 8624-37, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23720724

RESUMO

Plant pararetroviruses integrate serendipitously into their host genomes. The banana genome harbors integrated copies of banana streak virus (BSV) named endogenous BSV (eBSV) that are able to release infectious pararetrovirus. In this investigation, we characterized integrants of three BSV species-Goldfinger (eBSGFV), Imove (eBSImV), and Obino l'Ewai (eBSOLV)-in the seedy Musa balbisiana Pisang klutuk wulung (PKW) by studying their molecular structure, genomic organization, genomic landscape, and infectious capacity. All eBSVs exhibit extensive viral genome duplications and rearrangements. eBSV segregation analysis on an F1 population of PKW combined with fluorescent in situ hybridization analysis showed that eBSImV, eBSOLV, and eBSGFV are each present at a single locus. eBSOLV and eBSGFV contain two distinct alleles, whereas eBSImV has two structurally identical alleles. Genotyping of both eBSV and viral particles expressed in the progeny demonstrated that only one allele for each species is infectious. The infectious allele of eBSImV could not be identified since the two alleles are identical. Finally, we demonstrate that eBSGFV and eBSOLV are located on chromosome 1 and eBSImV is located on chromosome 2 of the reference Musa genome published recently. The structure and evolution of eBSVs suggest sequential integration into the plant genome, and haplotype divergence analysis confirms that the three loci display differential evolution. Based on our data, we propose a model for BSV integration and eBSV evolution in the Musa balbisiana genome. The mutual benefits of this unique host-pathogen association are also discussed.


Assuntos
Genoma de Planta , Musa/virologia , Vírus de Plantas/genética , Dosagem de Genes , Ordem dos Genes , Genes Virais , Genótipo , Hibridização in Situ Fluorescente , Recombinação Genética
20.
Database (Oxford) ; 2013: bat035, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23707967

RESUMO

Banana is one of the world's favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/


Assuntos
Bases de Dados Genéticas , Genoma de Planta/genética , Musa/genética , Mapeamento Cromossômico , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Genes de Plantas/genética , Funções Verossimilhança , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Família Multigênica/genética , Oryza/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Homologia de Sequência do Ácido Nucleico , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...