Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 8(85): eadg0033, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506197

RESUMO

Type I interferons (IFN-I) are critical mediators of innate control of viral infections but also drive the recruitment of inflammatory cells to sites of infection, a key feature of severe coronavirus disease 2019. Here, IFN-I signaling was modulated in rhesus macaques (RMs) before and during acute SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection using a mutated IFN-α2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. IFNmod treatment in uninfected RMs was observed to induce a modest up-regulation of only antiviral IFN-stimulated genes (ISGs); however, in SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. IFNmod treatment resulted in a potent reduction in SARS-CoV-2 viral loads both in vitro in Calu-3 cells and in vivo in bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes of RMs. Furthermore, in SARS-CoV-2-infected RMs, IFNmod treatment potently reduced inflammatory cytokines, chemokines, and CD163+ MRC1- inflammatory macrophages in BAL and expression of Siglec-1 on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. Using an intervention targeting both IFN-α and IFN-ß pathways, this study shows that, whereas early IFN-I restrains SARS-CoV-2 replication, uncontrolled IFN-I signaling critically contributes to SARS-CoV-2 inflammation and pathogenesis in the moderate disease model of RMs.


Assuntos
COVID-19 , Interferon Tipo I , Animais , Interferon Tipo I/farmacologia , SARS-CoV-2 , Macaca mulatta , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Inflamação/tratamento farmacológico
2.
Bioinformatics ; 39(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37417952

RESUMO

SUMMARY: Tau-typing is an integrated analysis pipeline for identifying genes or genomic segments whose phylogenetic resolving power most closely resembles the genome-wide resolving power of an input collection of genomes using the Kendall Tau rank correlation statistic. The pipeline is implemented in Nextflow and uses Docker and Singularity containers to ensure reliable scalability and reproducibility of results. This pipeline is particularly suitable for organisms for which whole-genome sequencing remains unaffordable or unscalable for routine applications, such as protozoan parasites which are not amenable to laboratory culture-based methods. AVAILABILITY AND IMPLEMENTATION: Tau-typing is freely available at https://github.com/hseabolt/tautyping. The pipeline is implemented in Nextflow with Singularity support.


Assuntos
Genoma , Software , Filogenia , Reprodutibilidade dos Testes , Tipagem Molecular
3.
Nat Commun ; 14(1): 1914, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024448

RESUMO

The immunopathological mechanisms driving the development of severe COVID-19 remain poorly defined. Here, we utilize a rhesus macaque model of acute SARS-CoV-2 infection to delineate perturbations in the innate immune system. SARS-CoV-2 initiates a rapid infiltration of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generate a longitudinal scRNA-Seq dataset of airway cells, and map these subsets to corresponding populations in the human lung. SARS-CoV-2 infection elicits a rapid recruitment of two macrophage subsets: CD163+MRC1-, and TREM2+ populations that are the predominant source of inflammatory cytokines. Treatment with baricitinib (Olumiant®), a JAK1/2 inhibitor is effective in eliminating the influx of non-alveolar macrophages, with a reduction of inflammatory cytokines. This study delineates the major lung macrophage subsets driving airway inflammation during SARS-CoV-2 infection.


Assuntos
COVID-19 , Animais , Humanos , Macaca mulatta , SARS-CoV-2 , Macrófagos , Inflamação , Citocinas , Glicoproteínas de Membrana , Receptores Imunológicos
4.
bioRxiv ; 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36324810

RESUMO

Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFNα2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1-inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN-α and IFN-ß pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.

5.
Proc Natl Acad Sci U S A ; 119(33): e2208522119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939714

RESUMO

Apoptosis is a genetically regulated program of cell death that plays a key role in immune disease processes. We identified EBF4, a little-studied member of the early B cell factor (EBF) family of transcription factors, in a whole-genome CRISPR screen for regulators of Fas/APO-1/CD95-mediated T cell death. Loss of EBF4 increases the half-life of the c-FLIP protein, and its presence in the Fas signaling complex impairs caspase-8 cleavage and apoptosis. Transcriptome analysis revealed that EBF4 regulates molecules such as TBX21, EOMES, granzyme, and perforin that are important for human natural killer (NK) and CD8+ T cell functions. Proximity-dependent biotin identification (Bio-ID) mass spectrometry analyses showed EBF4 binding to STAT3, STAT5, and MAP kinase 3 and a strong pathway relationship to interleukin-2 regulated genes, which are known to govern cytotoxicity pathways. Chromatin immunoprecipitation and DNA sequencing analysis defined a canonical EBF4 binding motif, 5'-CCCNNGG/AG-3', closely related to the EBF1 binding site; using a luciferase-based reporter, we found a dose-dependent transcriptional response of this motif to EBF4. We also conducted assay for transposase-accessible chromatin sequencing in EBF4-overexpressing cells and found increased chromatin accessibility upstream of granzyme and perforin and in topologically associated domains in human lymphocytes. Finally, we discovered that the EBF4 has basal expression in human but not mouse NK cells and CD8+ T cells and vanishes following activating stimulation. Together, our data reveal key features of a previously unknown transcriptional regulator of human cytotoxic immune function.


Assuntos
Apoptose , Linfócitos T CD8-Positivos , Citotoxicidade Imunológica , Proteína Ligante Fas , Linfócitos T Citotóxicos , Fatores de Transcrição , Animais , Apoptose/fisiologia , Cromatina/metabolismo , Citotoxicidade Imunológica/genética , Proteína Ligante Fas/metabolismo , Granzimas/genética , Humanos , Camundongos , Perforina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
bioRxiv ; 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34642693

RESUMO

The COVID-19 pandemic remains a global health crisis, yet, the immunopathological mechanisms driving the development of severe disease remain poorly defined. Here, we utilize a rhesus macaque (RM) model of SARS-CoV-2 infection to delineate perturbations in the innate immune system during acute infection using an integrated systems analysis. We found that SARS-CoV-2 initiated a rapid infiltration (two days post infection) of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and induction of interferon-stimulated genes. At this early interval, we also observed a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generated a novel compendium of RM-specific lung macrophage gene expression using a combination of sc-RNA-Seq data and bulk RNA-Seq of purified populations under steady state conditions. Using these tools, we generated a longitudinal sc-RNA-seq dataset of airway cells in SARS-CoV-2-infected RMs. We identified that SARS-CoV-2 infection elicited a rapid recruitment of two subsets of macrophages into the airway: a C206+MRC1-population resembling murine interstitial macrophages, and a TREM2+ population consistent with CCR2+ infiltrating monocytes, into the alveolar space. These subsets were the predominant source of inflammatory cytokines, accounting for ~75% of IL6 and TNF production, and >90% of IL10 production, whereas the contribution of CD206+MRC+ alveolar macrophages was significantly lower. Treatment of SARS-CoV-2 infected RMs with baricitinib (Olumiant ® ), a novel JAK1/2 inhibitor that recently received Emergency Use Authorization for the treatment of hospitalized COVID-19 patients, was remarkably effective in eliminating the influx of infiltrating, non-alveolar macrophages in the alveolar space, with a concomitant reduction of inflammatory cytokines. This study has delineated the major subsets of lung macrophages driving inflammatory and anti-inflammatory cytokine production within the alveolar space during SARS-CoV-2 infection. ONE SENTENCE SUMMARY: Multi-omic analyses of hyperacute SARS-CoV-2 infection in rhesus macaques identified two population of infiltrating macrophages, as the primary orchestrators of inflammation in the lower airway that can be successfully treated with baricitinib.

7.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34039612

RESUMO

Chronic infectious diseases have a substantial impact on the human B cell compartment including a notable expansion of B cells here termed atypical B cells (ABCs). Using unbiased single-cell RNA sequencing (scRNA-seq), we uncovered and characterized heterogeneities in naïve B cell, classical memory B cells, and ABC subsets. We showed remarkably similar transcriptional profiles for ABC clusters in malaria, HIV, and autoimmune diseases and demonstrated that interferon-γ drove the expansion of ABCs in malaria. These observations suggest that ABCs represent a separate B cell lineage with a common inducer that further diversifies and acquires disease-specific characteristics and functions. In malaria, we identified ABC subsets based on isotype expression that differed in expansion in African children and in B cell receptor repertoire characteristics. Of particular interest, IgD+IgMlo and IgD-IgG+ ABCs acquired a high antigen affinity threshold for activation, suggesting that ABCs may limit autoimmune responses to low-affinity self-antigens in chronic malaria.

8.
Immunity ; 54(3): 542-556.e9, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631118

RESUMO

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Vetores Genéticos/genética , SARS-CoV-2/imunologia , Vacinas de DNA/imunologia , Vaccinia virus/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Imunofenotipagem , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinação/métodos , Vacinas de DNA/genética
9.
J Leukoc Biol ; 110(4): 679-691, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33404075

RESUMO

No longer regarded simply as end-stage cytotoxic effectors, eosinophils are now recognized as complex cells with unique phenotypes that develop in response stimuli in the local microenvironment. In our previous study, we documented eosinophil infiltration in damaged muscle characteristic of dystrophin-deficient (mdx) mice that model Duchenne muscular dystrophy. Specifically, we found that eosinophils did not promote the generation of muscle lesions, as these persisted in eosinophil-deficient mdx.PHIL mice. To obtain additional insight into these findings, we performed RNA sequencing of eosinophils isolated from muscle tissue of mdx, IL5tg, and mdx.IL5tg mice. We observed profound up-regulation of classical effector proteins (major basic protein-1, eosinophil peroxidase, and eosinophil-associated ribonucleases) in eosinophils isolated from lesion-free muscle from IL5tg mice. By contrast, we observed significant up-regulation of tissue remodeling genes, including proteases, extracellular matrix components, collagen, and skeletal muscle precursors, as well as the immunomodulatory receptor, Trem2, in eosinophils isolated from skeletal muscle tissue from the dystrophin-deficient mdx mice. Although the anti-inflammatory properties of Trem2 have been described in the monocyte/macrophage lineage, no previous studies have documented its expression in eosinophils. We found that Trem2 was critical for full growth and differentiation of bone marrow-derived eosinophil cultures and full expression of TLR4. Immunoreactive Trem2 was also detected on human peripheral blood eosinophils at levels that correlated with donor body mass index and total leukocyte count. Taken together, our findings provide important insight into the immunomodulatory and remodeling capacity of mouse eosinophils and the flexibility of their gene expression profiles in vivo.


Assuntos
Eosinófilos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Animais , Sangue/metabolismo , Contagem de Células , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos Knockout , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Receptor 4 Toll-Like/metabolismo
10.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278358

RESUMO

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Assuntos
Anti-Inflamatórios/administração & dosagem , Azetidinas/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , COVID-19/fisiopatologia , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Janus Quinases/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos Alveolares/imunologia , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacos
11.
bioRxiv ; 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32995780

RESUMO

Effective therapeutics aimed at mitigating COVID-19 symptoms are urgently needed. SARS-CoV-2 induced hypercytokinemia and systemic inflammation are associated with disease severity. Baricitinib, a clinically approved JAK1/2 inhibitor with potent anti-inflammatory properties is currently being investigated in COVID-19 human clinical trials. Recent reports suggest that baricitinib may also have antiviral activity in limiting viral endocytosis. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages and tissues was not reduced with baricitinib. Type I IFN antiviral responses and SARS-CoV-2 specific T cell responses remained similar between the two groups. Importantly, however, animals treated with baricitinib showed reduced immune activation, decreased infiltration of neutrophils into the lung, reduced NETosis activity, and more limited lung pathology. Moreover, baricitinib treated animals had a rapid and remarkably potent suppression of alveolar macrophage derived production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for severe inflammation induced by SARS-CoV-2 infection.

12.
iScience ; 23(1): 100759, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31887663

RESUMO

T lymphocytes are critical for effective immunity, and the ability to study their behavior in vitro can facilitate major insights into their development, function, and fate. However, the composition of human plasma differs from conventional media, and we hypothesized that such differences could impact immune cell physiology. Here, we showed that relative to the medium typically used to culture lymphocytes (RPMI), a physiologic medium (human plasma-like medium; HPLM) induced markedly different transcriptional responses in human primary T cells and in addition, improved their activation upon antigen stimulation. We found that this medium-dependent effect on T cell activation is linked to Ca2+, which is six-fold higher in HPLM than in RPMI. Thus, a medium that more closely resembles human plasma has striking effects on T cell biology, further demonstrates that medium composition can profoundly affect experimental results, and broadly suggests that physiologic media may offer a valuable way to study cultured immune cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...