Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1349111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665597

RESUMO

Deep learning is a very important technique in clinical diagnosis and therapy in the present world. Convolutional Neural Network (CNN) is a recent development in deep learning that is used in computer vision. Our medical investigation focuses on the identification of brain tumour. To improve the brain tumour classification performance a Balanced binary Tree CNN (BT-CNN) which is framed in a binary tree-like structure is proposed. It has a two distinct modules-the convolution and the depthwise separable convolution group. The usage of convolution group achieves lower time and higher memory, while the opposite is true for the depthwise separable convolution group. This balanced binarty tree inspired CNN balances both the groups to achieve maximum performance in terms of time and space. The proposed model along with state-of-the-art models like CNN-KNN and models proposed by Musallam et al., Saikat et al., and Amin et al. are experimented on public datasets. Before we feed the data into model the images are pre-processed using CLAHE, denoising, cropping, and scaling. The pre-processed dataset is partitioned into training and testing datasets as per 5 fold cross validation. The proposed model is trained and compared its perforarmance with state-of-the-art models like CNN-KNN and models proposed by Musallam et al., Saikat et al., and Amin et al. The proposed model reported average training accuracy of 99.61% compared to other models. The proposed model achieved 96.06% test accuracy where as other models achieved 68.86%, 85.8%, 86.88%, and 90.41% respectively. Further, the proposed model obtained lowest standard deviation on training and test accuracies across all folds, making it invariable to dataset.

2.
BMC Med Imaging ; 24(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166813

RESUMO

Deep learning is a highly significant technology in clinical treatment and diagnostics nowadays. Convolutional Neural Network (CNN) is a new idea in deep learning that is being used in the area of computer vision. The COVID-19 detection is the subject of our medical study. Researchers attempted to increase the detection accuracy but at the cost of high model complexity. In this paper, we desire to achieve better accuracy with little training space and time so that this model easily deployed in edge devices. In this paper, a new CNN design is proposed that has three stages: pre-processing, which removes the black padding on the side initially; convolution, which employs filter banks; and feature extraction, which makes use of deep convolutional layers with skip connections. In order to train the model, chest X-ray images are partitioned into three sets: learning(0.7), validation(0.1), and testing(0.2). The models are then evaluated using the test and training data. The LMNet, CoroNet, CVDNet, and Deep GRU-CNN models are the other four models used in the same experiment. The propose model achieved 99.47% & 98.91% accuracy on training and testing respectively. Additionally, it achieved 97.54%, 98.19%, 99.49%, and 97.86% scores for precision, recall, specificity, and f1-score respectively. The proposed model obtained nearly equivalent accuracy and other similar metrics when compared with other models but greatly reduced the model complexity. Moreover, it is found that proposed model is less prone to over fitting as compared to other models.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Raios X , Tórax , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...