Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 13(1): 117, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864072

RESUMO

Sphaerobacter thermophilus synthesizes an ω-transaminase (ω-TA) that allows the production of enantiomerically pure ß-amino acids. To obtain ω-TA variants with a higher activity and more favorable properties for industrial use, we modified critical amino acid residues either in the catalytic center or in a previously proposed signature motif critical for aromatic ß-amino acid ω-TAs. Seventeen different variants of this enzyme were generated and their activity was examined with four ß-amino acids and one γ-amino acid, and compared with the wildtype's activity. Among all variants, seven showed up to ninefold higher activity with at least one of the tested substrates. For most of these seven variants, the temperature optimum was even lower as in the wild type enzyme, with keeping a high temperature stability, making them more valuable for industrial purposes. Our results indicate that for the production of enantiomerically pure ß-amino acids replacement of critical amino acid residues in the proposed signature motif of ω-TAs is a more effective strategy than modifying their catalytic center. Another finding was, that the proposed motif is not only suitable for aromatic amino acid ω-TAs, because some of the variants have a higher activity with ß-alanine or ß-leucine than with aromatic ß-amino acids.

2.
Heliyon ; 9(1): e12729, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685366

RESUMO

Enantioselective transamination of amino acids is a great challenge in biotechnology as suitable enzymes with wide substrate spectrum are rare. Here, we present a new transaminase from Variovorax boronicumulans (VboTA, Variovorax boronicumulansω-transaminase) which is specific for ß-amino acids. The amino acid sequence of VboTA is similar to an ω-transaminase from Variovorax paradoxus, for which a crystal-structure is available. This similarity is allowing us to classify VboTA as a fold type 1 ω-transaminase (ω-TA). Although both enzymes have a high sequence similarity (86% identities, 92% positives), there are differences in the active center, which allow VboTA to accept a broader substrate spectrum. Both enzymes have also a different temperature stability and temperature optimum. VboTA deaminates the D-form of aromatic ß-amino acids, such as ß-homophenylalanine and ß-phenylalanine as well as aliphatic ß-amino acids, such as ß-homoalanine and ß-leucine. The optimal reaction conditions turned out to be 32 °C and pH 9. Kinetic resolution lead to high enantiomeric excess of 86.6% to >99.9%, depending on the amino donor/acceptor pair. In contrast to many other ω-TAs, VboTA has a broad substrate spectrum and uses both aromatic or aliphatic amino acids. With γ-amino acids as substrates, VboTA showed no activity at all.

3.
Front Microbiol ; 13: 872298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722288

RESUMO

Gallic acid, protocatechuic acid, catechol, and pyrogallol are only a few examples of industrially relevant aromatics. Today much attention is paid to the development of new microbial factories for the environmentally friendly biosynthesis of industrially relevant chemicals with renewable resources or organic pollutants as the starting material. The non-conventional yeast, Blastobotrys raffinosifermentans, possesses attractive properties for industrial bio-production processes such as thermo- and osmotolerance. An additional advantage is its broad substrate spectrum, with tannins at the forefront. The present study is dedicated to the characterization of catechol-1,2-dioxygenase (Acdo1p) and the analysis of its function in B. raffinosifermentans tannic acid catabolism. Acdo1p is a dimeric protein with higher affinity for catechol (K M = 0.004 ± 0.001 mM, k cat = 15.6 ± 0.4 s-1) than to pyrogallol (K M = 0.1 ± 0.02 mM, k cat = 10.6 ± 0.4 s-1). It is an intradiol dioxygenase and its reaction product with catechol as the substrate is cis,cis-muconic acid. B. raffinosifermentans G1212/YIC102-AYNI1-ACDO1-6H, which expresses the ACDO1 gene under the control of the strong nitrate-inducible AYNI1 promoter, achieved a maximum catechol-1,2-dioxygenase activity of 280.6 U/L and 26.9 U/g of dry cell weight in yeast grown in minimal medium with nitrate as the nitrogen source and 1.5% glucose as the carbon source. In the same medium with glucose as the carbon source, catechol-1,2-dioxygenase activity was not detected for the control strain G1212/YIC102 with ACDO1 expression under the regulation of its respective endogenous promoter. Gene expression analysis showed that ACDO1 is induced by gallic acid and protocatechuic acid. In contrast to the wild-type strain, the B. raffinosifermentans strain with a deletion of the ACDO1 gene was unable to grow on medium supplemented with gallic acid or protocatechuic acid as the sole carbon source. In summary, we propose that due to its substrate specificity, its thermal stability, and its ability to undergo long-term storage without significant loss of activity, B. raffinosifermentans catechol-1,2-dioxygenase (Acdo1p) is a promising enzyme candidate for industrial applications.

4.
Enzyme Microb Technol ; 153: 109898, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34670183

RESUMO

Several putative lipase genes from the genome of the yeast Blastobotrys (Arxula) raffinosifermentans (adeninivorans) LS3 were overexpressed in the yeast itself and screened for the desymmetrization of the dicarboxylic acid diester diethyl adipate (DEA) into the monoester monoethyl adipate (MEA). MEA can serve as a monomeric spacer group for functional polymers used in medical chemistry and dental applications. The selected lipase Alip2-c6hp was intracellularly located. After overexpression of the corresponding gene, it was purified and biochemically characterized using p-nitrophenyl butyrate as the substrate for standard activity tests. In fed-batch cultivation with constructed yeast strain B. raffinosifermentans G1212/YRC102-Alip2-c6h for large scale production of the Alip2-c6hp biocatalyst enzyme activities up to 674 U L-1 were reached. Several tested diesters were hydrolyzed selectively to monoesters. Under optimized conditions, the purified enzyme Alip2p-c6h converted 96 % of the substrate DEA to MEA within 30 min incubation, whereby only 1.6 % of the unwanted side-product adipic acid (AA) was formed. At room temperature the dicarboxylic acid esters diethyl malonate (DEM), diethyl succinate (DES), dimethyl adipate (DMA) and dimethyl suberate (DMSub) were completely hydrolyzed to their corresponding monoesters. A high yield of 87 % and 25 % could also be achieved with the dioldiesters 1,4-diacetoxybutane (DAB) and diacetoxyhexane (DAH). In conclusion the potential of the lipase Alip2-c6hp expressed in B. raffinosifermentans is very promising for selective hydrolysis of DEA to MEA as well as for the production of other monoesters.


Assuntos
Ésteres/metabolismo , Proteínas Fúngicas/genética , Lipase , Saccharomycetales/enzimologia , Hidrólise , Lipase/genética
5.
AMB Express ; 9(1): 102, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297621

RESUMO

Recent years have seen an increasing interest in laccase enzymes. Due to their ability of oxidizing various substrates, they are nowadays applied in multiple industrial fields including pulp delignification, textile dye bleaching, and bioremediation. In contrast to laccase production from native sources, with its generally low yield and high cost, heterologous laccase expression is far better suited to meet the growing industrial demands. TVLCC5 gene encoding Trametes versicolor laccase 5 was overexpressed in Arxula adeninivorans using the strong constitutive TEF1 promoter. Recombinant Tvlcc5 protein was purified by immobilized-metal ion affinity chromatography and biochemically characterized using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as substrate for standard activity assays. The enzyme showed the highest activity at 50 °C between pH 4.5-5.5. The half-life of Tvlcc5 at 60 °C was around 20 min. The negative effect of chloride anions on enzyme activity was demonstrated. A fed-batch cultivation of Tvlcc5 producing strain A. adeninivorans G1212/YRC102-TEF1-TVLCC5-6H was performed and resulted in a laccase activity of 4986.3 U L-1. To improve the expression level of recombinant laccase in A. adeninivorans, cultivation conditions were optimized by single factor experiments. Recombinant Tvlcc5 proved to be a promising agent for degradation of pharmaceuticals that are an important source of environmental pollution. Concentration of diclofenac and sulfamethoxazole decreased to 46.8% and 51.1% respectively after 24 h incubation with Tvlcc5. When 1 mM redox mediator ABTS was added complete degradation was obtained within 1 h.

6.
Front Microbiol ; 8: 1777, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966611

RESUMO

Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km -0.7 ± 0.2 mM, kcat -42.0 ± 8.2 s-1) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (Km -3.2 ± 0.2 mM, kcat -44.0 ± 3.2 s-1). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway.

7.
Microb Cell Fact ; 16(1): 144, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818103

RESUMO

BACKGROUND: In recent years the production of biobased biodegradable plastics has been of interest of researchers partly due to the accumulation of non-biodegradable plastics in the environment and to the opportunity for new applications. Commonly investigated are the polyhydroxyalkanoates (PHAs) poly(hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHB-V). The latter has the advantage of being tougher and less brittle. The production of these polymers in bacteria is well established but production in yeast may have some advantages, e.g. the ability to use a broad spectrum of industrial by-products as a carbon sources. RESULTS: In this study we increased the synthesis of PHB-V in the non-conventional yeast Arxula adeninivorans by stabilization of polymer accumulation via genetic modification and optimization of culture conditions. An A. adeninivorans strain with overexpressed PHA pathway genes for ß-ketothiolase, acetoacetyl-CoA reductase, PHAs synthase and the phasin gene was able to accumulate an unexpectedly high level of polymer. It was found that an optimized strain cultivated in a shaking incubator is able to produce up to 52.1% of the DCW of PHB-V (10.8 g L-1) with 12.3%mol of PHV fraction. Although further optimization of cultivation conditions in a fed-batch bioreactor led to lower polymer content (15.3% of the DCW of PHB-V), the PHV fraction and total polymer level increased to 23.1%mol and 11.6 g L-1 respectively. Additionally, analysis of the product revealed that the polymer has a very low average molecular mass and unexpected melting and glass transition temperatures. CONCLUSIONS: This study indicates a potential of use for the non-conventional yeast, A. adeninivorans, as an efficient producer of polyhydroxyalkanoates.


Assuntos
Poliésteres/metabolismo , Saccharomycetales/metabolismo , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Proteínas Fúngicas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Poliésteres/análise , Poliésteres/química , Saccharomycetales/enzimologia , Saccharomycetales/crescimento & desenvolvimento
8.
AMB Express ; 7(1): 4, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28050847

RESUMO

(R)-3-hydroxybutyric acid can be used in industrial and health applications. The synthesis pathway comprises two enzymes, ß-ketothiolase and acetoacetyl-CoA reductase which convert cytoplasmic acetyl-CoA to (R)-3-hydroxybutyric acid [(R)-3-HB] which is released into the culture medium. In the present study we used the non-conventional yeast, Arxula adeninivorans, for the synthesis enantiopure (R)-3-HB. To establish optimal production, we investigated three different endogenous yeast thiolases (Akat1p, Akat2p, Akat4p) and three bacterial thiolases (atoBp, thlp, phaAp) in combination with an enantiospecific reductase (phaBp) from Cupriavidus necator H16 and endogenous yeast reductases (Atpk2p, Afox2p). We found that Arxula is able to release (R)-3-HB used an existing secretion system negating the need to engineer membrane transport. Overexpression of thl and phaB genes in organisms cultured in a shaking flask resulted in 4.84 g L-1 (R)-3-HB, at a rate of 0.023 g L-1 h-1 over 214 h. Fed-batch culturing with glucose as a carbon source did not improve the yield, but a similar level was reached with a shorter incubation period [3.78 g L-1 of (R)-3-HB at 89 h] and the rate of production was doubled to 0.043 g L-1 h-1 which is higher than any levels in yeast reported to date. The secreted (R)-3-HB was 99.9% pure. This is the first evidence of enantiopure (R)-3-HB synthesis using yeast as a production host and glucose as a carbon source.

9.
Microb Cell Fact ; 15(1): 175, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733155

RESUMO

BACKGROUND: The non-conventional yeast Arxula adeninivorans uses 1-butanol as a carbon source and has recently attracted attention as a promising organism for 1-butanol production. Alcohol dehydrogenases (adhp) are important catalysts in 1-butanol metabolism, but only Aadh1p from Arxula has been characterized. This enzyme is involved in ethanol synthesis but has a low impact on 1-butanol degradation. RESULTS: In this study, we identified and characterized a second adhp from A. adeninivorans (Aadh2p). Compared to Saccharomyces cerevisiae ADHs' (ScAdh) protein sequences it originates from the same ancestral node as ScAdh6p, 7p and 4p. It is also localized in the cytoplasm and uses NAD(H) as cofactor. The enzyme has its highest activity with medium chain-length alcohols and maximum activity with 1-butanol with the catalytic efficiency of the purified enzyme being 42 and 43,000 times higher than with ethanol and acetaldehyde, respectively. Arxula adeninivorans strain G1212/YRC102-AADH2, which expresses the AADH2 gene under the control of the strong constitutive TEF1 promoter was constructed. It achieved an ADH activity of up to 8000 U/L and 500 U/g dry cell weight (dcw) which is in contrast to the control strain G1212/YRC102 which had an ADH activity of up to 1400 U/L and 200 U/g dcw. Gene expression analysis showed that AADH2 derepression or induction using non-fermentable carbon-sources such as ethanol, pyruvate, glycerol or 1-butanol did occur. Compared to G1212/YRC102 AADH2 knock-out strain had a slower growth rate and lower 1-butanol consumption if 1-butanol was used as sole carbon source and AADH2-transformants did not grow at all in the same conditions. However, addition of the branched-chain amino acids leucine, isoleucine and valine allowed the transformants to use 1-butanol as carbon source. The addition of these amino acids to the control strain and Δaadh2 mutant cultures had the effect of accelerating 1-butanol consumption. CONCLUSIONS: Our results confirm that Aadh2p plays a major role in A. adeninivorans 1-butanol metabolism. It is upregulated by up to 60-fold when the cells grow on 1-butanol, whereas only minor changes were found in the relative expression level for Aadh1p. Thus the constitutive overexpression of the AADH2 gene could be useful in the production of 1-butanol by A. adeninivorans, although it is likely that other ADHs will have to be knocked-out to prevent 1-butanol oxidation.


Assuntos
1-Butanol/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Redes e Vias Metabólicas/genética , Leveduras/enzimologia , Álcool Desidrogenase/isolamento & purificação , Carbono/metabolismo , Etanol/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , NAD/metabolismo , Leveduras/genética , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
10.
FEMS Yeast Res ; 16(3)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912215

RESUMO

In this study, alcohol dehydrogenase 1 from Arxula adeninivorans (Aadh1p) was identified and characterized. Aadh1p showed activity with short and medium chain length primary alcohols in the forward reaction and their aldehydes in the reverse reaction. Aadh1p has 64% identity with Saccharomyces cerevisiae Adh1p, is localized in the cytoplasm and uses NAD(+) as cofactor. Gene expression analysis showed a low level increase in AADH1 gene expression with ethanol, pyruvate or xylose as the carbon source. Deletion of the AADH1 gene affects growth of the cells with 1-butanol, ethanol and glucose as the carbon source, and a strain which overexpressed the AADH1 gene metabolized 1-butanol more rapidly. An ADH activity assay indicated that Aadh1p is a major enzyme for the synthesis of ethanol and the degradation of 1-butanol in A. adeninivorans.


Assuntos
1-Butanol/metabolismo , Álcool Desidrogenase/metabolismo , Etanol/metabolismo , Saccharomycetales/enzimologia , Álcool Desidrogenase/genética , Sequência de Aminoácidos , Carbono/metabolismo , Coenzimas/metabolismo , Citoplasma/química , Perfilação da Expressão Gênica , Dados de Sequência Molecular , NAD/metabolismo , Ácido Pirúvico/metabolismo , Saccharomycetales/genética , Homologia de Sequência de Aminoácidos , Xilose/metabolismo
11.
Appl Environ Microbiol ; 81(16): 5497-510, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048925

RESUMO

The genes ACUT1, ACUT2, and ACUT3, encoding cutinases, were selected from the genomic DNA of Arxula adeninivorans LS3. The alignment of the amino acid sequences of these cutinases with those of other cutinases or cutinase-like enzymes from different fungi showed that they all had a catalytic S-D-H triad with a conserved G-Y-S-Q-G domain. All three genes were overexpressed in A. adeninivorans using the strong constitutive TEF1 promoter. Recombinant 6× His (6h)-tagged cutinase 1 protein (p) from A. adeninivorans LS3 (Acut1-6hp), Acut2-6hp, and Acut3-6hp were produced and purified by immobilized-metal ion affinity chromatography and biochemically characterized using p-nitrophenyl butyrate as the substrate for standard activity tests. All three enzymes from A. adeninivorans were active from pH 4.5 to 6.5 and from 20 to 30°C. They were shown to be unstable under optimal reaction conditions but could be stabilized using organic solvents, such as polyethylene glycol 200 (PEG 200), isopropanol, ethanol, or acetone. PEG 200 (50%, vol/vol) was found to be the best stabilizing agent for all of the cutinases, and acetone greatly increased the half-life and enzyme activity (up to 300% for Acut3-6hp). The substrate spectra for Acut1-6hp, Acut2-6hp, and Acut3-6hp were quite similar, with the highest activity being for short-chain fatty acid esters of p-nitrophenol and glycerol. Additionally, they were found to have polycaprolactone degradation activity and cutinolytic activity against cutin from apple peel. The activity was compared with that of the 6× His-tagged cutinase from Fusarium solani f. sp. pisi (FsCut-6hp), also expressed in A. adeninivorans, as a positive control. A fed-batch cultivation of the best Acut2-6hp-producing strain, A. adeninivorans G1212/YRC102-ACUT2-6H, was performed and showed that very high activities of 1,064 U ml(-1) could be achieved even with a nonoptimized cultivation procedure.


Assuntos
Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Saccharomycetales/enzimologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Cromatografia de Afinidade , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos da radiação , Expressão Gênica , Concentração de Íons de Hidrogênio , Resíduos Industriais , Malus/microbiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Solventes , Especificidade por Substrato , Temperatura
12.
Appl Microbiol Biotechnol ; 99(11): 4723-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25535093

RESUMO

The yeast Arxula adeninivorans was used for the overexpression of an ADH gene of Lactobacillus brevis coding for (R)-specific alcohol dehydrogenase (LbADH) to synthesise enantiomerically pure 1-(R)-phenylethanol. Glucose dehydrogenase gene from Bacillus megaterium (BmGDH) or glucose 6-phosphate dehydrogenase of Bacillus pumilus (BpG6PDH) were coexpressed in Arxula to regenerate the cofactor NADPH by oxidising glucose or glucose 6-phosphate. The yeast strain expressing LbADH and BpG6PDH produced 5200 U l(-1) ADH and 370 U l(-1) G6PDH activity, whereas the strain expressing LbADH and BmGDH produced 2700 U l(-1) ADH and 170 U l(-1) GDH activity. However, the crude extract of both strains reduced 40 mM acetophenone to pure 1-(R)-phenylethanol with an enantiomeric excess (ee) of >99 % in 60 min without detectable by-products. An increase in yield was achieved using immobilised crude extracts (IEs), Triton X-100 permeabilised cells (PCs) and permeabilised immobilised cells (PICs) with PICs being most stable with GDH regeneration over 52 cycles. Even though the activity and synthesis rate of 1-(R)-phenylethanol with the BpG6PDH and LbADH coexpressing strain was higher, the BmGDH-LbADH strain was more stable over successive reaction cycles. This, combined with its higher total turnover number (TTN) of 391 mol product per mole NADP(+), makes it the preferred strain for continuous reaction systems. The initial non-optimised semi-continuous reaction produced 9.74 g l(-1) day(-1) or 406 g kg(-1) dry cell weight (dcw) day(-1) isolated 1-(R)-phenylethanol with an ee of 100 % and a TTN of 206 mol product per mole NADP(+). In conclusion, A. adeninivorans is a promising host for LbADH and BpG6PDH or BmGDH production and offers a simple method for the production of enantiomerically pure alcohols.


Assuntos
Álcool Desidrogenase/metabolismo , Álcoois Benzílicos/metabolismo , Glucose 1-Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Levilactobacillus brevis/enzimologia , Engenharia Metabólica/métodos , Saccharomycetales/metabolismo , Álcool Desidrogenase/genética , Bacillus/enzimologia , Bacillus/genética , Expressão Gênica , Glucose 1-Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Levilactobacillus brevis/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/genética
13.
Bioengineered ; 6(1): 20-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25513995

RESUMO

The purine degradation pathway in humans ends with uric acid, which has low water solubility. When the production of uric acid is increased either by elevated purine intake or by impaired kidney function, uric acid will accumulate in the blood (hyperuricemia). This increases the risk of gout, a disease described in humans for at least 1000 years. Many lower organisms, such as the yeast Arxula adeninivorans, possess the enzyme, urate oxidase that converts uric acid to 5-hydroxyisourate, thus preventing uric acid accumulation. We have examined the complete purine degradation pathway in A. adeninivorans and analyzed enzymes involved. Recombinant adenine deaminase, guanine deaminase, urate oxidase and endogenous xanthine oxidoreductase have been investigated as potential additives to degrade purines in the food. Here, we review the current model of the purine degradation pathway of A. adeninivorans and present an overview of proposed enzyme system with perspectives for its further development.


Assuntos
Aditivos Alimentares/metabolismo , Proteínas Fúngicas/metabolismo , Purinas/metabolismo , Saccharomycetales/enzimologia , Urato Oxidase/metabolismo , Proteínas Fúngicas/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Urato Oxidase/genética
14.
Biotechnol Biofuels ; 7: 66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834124

RESUMO

BACKGROUND: The industrially important yeast Blastobotrys (Arxula) adeninivorans is an asexual hemiascomycete phylogenetically very distant from Saccharomyces cerevisiae. Its unusual metabolic flexibility allows it to use a wide range of carbon and nitrogen sources, while being thermotolerant, xerotolerant and osmotolerant. RESULTS: The sequencing of strain LS3 revealed that the nuclear genome of A. adeninivorans is 11.8 Mb long and consists of four chromosomes with regional centromeres. Its closest sequenced relative is Yarrowia lipolytica, although mean conservation of orthologs is low. With 914 introns within 6116 genes, A. adeninivorans is one of the most intron-rich hemiascomycetes sequenced to date. Several large species-specific families appear to result from multiple rounds of segmental duplications of tandem gene arrays, a novel mechanism not yet described in yeasts. An analysis of the genome and its transcriptome revealed enzymes with biotechnological potential, such as two extracellular tannases (Atan1p and Atan2p) of the tannic-acid catabolic route, and a new pathway for the assimilation of n-butanol via butyric aldehyde and butyric acid. CONCLUSIONS: The high-quality genome of this species that diverged early in Saccharomycotina will allow further fundamental studies on comparative genomics, evolution and phylogenetics. Protein components of different pathways for carbon and nitrogen source utilization were identified, which so far has remained unexplored in yeast, offering clues for further biotechnological developments. In the course of identifying alternative microorganisms for biotechnological interest, A. adeninivorans has already proved its strengthened competitiveness as a promising cell factory for many more applications.

15.
J Mol Microbiol Biotechnol ; 24(2): 67-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24481069

RESUMO

Purines of exogenous and endogenous sources are degraded to uric acid in human beings. Concentrations >6.8 mg uric acid/dl serum cause hyperuricemia and its symptoms. Pharmaceuticals and the reduction of the intake of purine-rich food are used to control uric acid levels. A novel approach to the latter proposition is the enzymatic reduction of the purine content of food by purine-degrading enzymes. Here we describe the production of recombinant guanine deaminase by the yeast Arxula adeninivorans LS3 and its application in food. In media supplemented with nitrogen sources hypoxanthine or adenine, guanine deaminase (AGDA) gene expression is induced and intracellular accumulation of guanine deaminase (Agdap) protein occurs. The characteristics of the guanine deaminase isolated from wild-type strain LS3 and a transgenic strain expressing the AGDA gene under control of the strong constitutive TEF1 promoter were determined and compared. Both enzymes were dimeric and had temperature optima of 55°C with high substrate specificity for guanine and localisation in both the cytoplasm and vacuole of yeast. The enzyme was demonstrated to reduce levels of guanine in food. A mixture of guanine deaminase and other purine degradation enzymes will allow the reduction of purines in purine-rich foods.


Assuntos
Microbiologia de Alimentos , Guanina Desaminase/metabolismo , Purinas/análise , Saccharomycetales/enzimologia , Estabilidade Enzimática , Análise de Alimentos , Guanina Desaminase/química , Guanina Desaminase/genética , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Especificidade por Substrato , Temperatura
16.
J Mol Microbiol Biotechnol ; 23(6): 418-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24022585

RESUMO

Hyperuricemia and its symptoms are becoming increasingly common worldwide. Elevated serum uric acid levels are caused by increased uric acid synthesis from food constituents and reduced renal excretion. Treatment in most cases involves reducing alcohol intake and consumption of meat and fish or treatment with pharmaceuticals. Another approach could be to reduce uric acid level in food, either during production or consumption. This work reports the production of recombinant urate oxidase by Arxula adeninivorans and its application to reduce uric acid in a food product. The A. adeninivorans urate oxidase amino acid sequence was found to be similar to urate oxidases from other fungi (61-65% identity). In media supplemented with adenine, hypoxanthine or uric acid, induction of the urate oxidase (AUOX) gene and intracellular accumulation of urate oxidase (Auoxp) was observed. The enzyme characteristics were analyzed from isolates of the wild-type strain A. adeninivorans LS3, as well as from those of transgenic strains expressing the AUOX gene under control of the strong constitutive TEF1 promoter or the inducible AYNI1 promoter. The enzyme showed high substrate specificity for uric acid, a broad temperature and pH range, high thermostability and the ability to reduce uric acid content in food.


Assuntos
Manipulação de Alimentos/métodos , Saccharomycetales/enzimologia , Urato Oxidase/metabolismo , Ácido Úrico/metabolismo , Adenina/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , Estabilidade Enzimática , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Hipoxantina/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura , Urato Oxidase/química , Urato Oxidase/genética
17.
FEMS Yeast Res ; 12(8): 924-37, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22900669

RESUMO

Fumarate reductase is an enzyme involved in maintaining redox balance through regeneration of reduced cofactors during oxygen deficiency conditions. This work reports the identification and characterization of the gene and its promoter and terminator elements that encodes cytosolic fumarate reductase enzyme in the nonconventional yeast, Arxula adeninivorans. The gene harbours an ORF of 1446 bp, encoding a 482-amino acid protein. The deduced amino acid sequence is similar to those of fumarate reductases from other yeast and fungi, such as the two fumarate reductases of Saccharomyces cerevisiae, Frd1p (44%) and Osm1p (41%). This enzyme is located in the cytosol and has a pH optimum of ca. 7.5 and a Michaelis constant (K(M)) of 2.9 mM with fumarate as the substrate. Expression of AFRD1 is regulated by the cultivation conditions. A shift from NaCl-free to NaCl-supplemented media and aerobic to hypoxic growth conditions leads to reduced AFRD1 transcription levels, but not to alteration in the concentration of Afrd1p. The functional analyses of Afrd1p were performed in A. adeninivorans and S. cerevisiae disruption mutants. The A. adeninivorans fumarate reductase is capable of functional complementation of the missing S. cerevisiae genes during anoxia; however, it is not involved in yeast growth under osmotic stress.


Assuntos
Proteínas Fúngicas/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/genética , Succinato Desidrogenase/metabolismo , Sequência de Aminoácidos , Hipóxia Celular , Clonagem Molecular , Meios de Cultura , DNA Fúngico/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutação , Pressão Osmótica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomycetales/crescimento & desenvolvimento , Análise de Sequência de DNA , Succinato Desidrogenase/genética
18.
J Ind Microbiol Biotechnol ; 39(9): 1385-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22584819

RESUMO

The Xplor®2 transformation/expression platform was employed for comparative assessment of three different yeast species as hosts for synthesis of a thermostable nicotinamide adenine dinucleotide (NAD⁺)-dependent medium-chain alcohol dehydrogenase from Rhodococcus ruber strain 219. Using yeast ribosomal DNA (rDNA) integrative expression cassettes (YRCs) and yeast integrative expression cassettes (YICs) equipped with a selection-marker module and one, two or four expression modules for transformation of auxotrophic Arxula adeninivorans, Hansenula polymorpha, and Saccharomyces cerevisiae strains, quantitative comparison of the yield of recombinant alcohol dehydrogenase RR-ADH6Hp in all three species was carried out. In all cases, the RR-ADH6H gene was expressed under the control of the strong constitutive A. adeninivorans-derived TEF1 promoter, which functions in all yeast species analyzed. Recombinant RR-ADH6Hp accumulated intracellularly in all strains tested. The best yields of active enzyme were obtained from A. adeninivorans, with S. cerevisiae producing intermediate amounts. Although H. polymorpha was the least efficient producer overall, the product obtained was most similar to the enzyme synthesized by R. ruber 219 with respect to its thermostability.


Assuntos
Álcool Desidrogenase/biossíntese , Álcool Desidrogenase/química , Rhodococcus/enzimologia , Transformação Genética , Leveduras/genética , Leveduras/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Estabilidade Enzimática , Engenharia Genética , Vetores Genéticos/genética , Rhodococcus/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Leveduras/classificação
19.
Fungal Genet Biol ; 49(4): 313-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22343635

RESUMO

Fumarate reductase is a protein involved in the maintenance of redox balance during oxygen deficiency. This enzyme irreversibly catalyzes the reduction of fumarate to succinate and requires flavin cofactors as electron donors. Two examples are the soluble mitochondrial and the cytosolic fumarate reductases of Saccharomyces cerevisiae encoded by the OSM1 and FRDS1 genes, respectively. This work reports the identification and characterization of the gene encoding cytosolic fumarate reductase enzyme in the arbuscular mycorrhizal fungus, Glomus intraradices and the establishment of its physiological role. Using a yeast expression system, we demonstrate that G. intraradices GiFRD encodes a protein that has fumarate reductase activity which can functionally substitute for the S. cerevisiae fumarate reductases. Additionally, we showed that GiFRD transformants are not affected by presence of salt in medium, indicating that the presence of this gene has no effect on yeast behavior under osmotic stress. The fact that GiFRD expression and enzymatic activity was present only in asymbiotic stage confirmed existence of at least one anaerobic metabolic pathway in this phase of fungus life cycle. This suggests that the AMF behave as facultative anaerobes in the asymbiotic stage.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Glomeromycota/enzimologia , Micorrizas/enzimologia , Succinato Desidrogenase/metabolismo , Sequência de Aminoácidos , Anaerobiose , Citosol/enzimologia , DNA Fúngico/química , DNA Fúngico/genética , Daucus carota/microbiologia , Fumaratos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glomeromycota/genética , Glomeromycota/crescimento & desenvolvimento , Glomeromycota/fisiologia , Dados de Sequência Molecular , Mutação , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Oxirredução , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Succinato Desidrogenase/genética , Ácido Succínico/metabolismo , Simbiose
20.
Mol Biosyst ; 7(4): 1241-53, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21327190

RESUMO

As a versatile pathogen Staphylococcus aureus can cause various disease patterns, which are influenced by strain specific virulence factor repertoires but also by S. aureus physiological adaptation capacity. Here, we present metabolomic descriptions of S. aureus central metabolic pathways and demonstrate the potential for combined metabolomics- and proteomics-based approaches for the basic research of this important pathogen. This study provides a time-resolved picture of more than 500 proteins and 94 metabolites during the transition from exponential growth to glucose starvation. Under glucose excess, cells exhibited higher levels of proteins involved in glycolysis and protein-synthesis, whereas entry into the stationary phase triggered an increase of enzymes of TCC and gluconeogenesis. These alterations in levels of metabolic enzymes were paralleled by more pronounced changes in the concentrations of associated metabolites, in particular, intermediates of the glycolysis and several amino acids.


Assuntos
Adaptação Fisiológica , Glucose/metabolismo , Metabolômica , Proteômica , Staphylococcus aureus/fisiologia , Análise por Conglomerados , Meios de Cultivo Condicionados/química , Espaço Intracelular/metabolismo , Redes e Vias Metabólicas , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...