Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 308: 122562, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583365

RESUMO

Painful musculoskeletal disorders such as intervertebral disc (IVD) degeneration associated with chronic low back pain (termed "Discogenic back pain", DBP), are a significant socio-economic burden worldwide and contribute to the growing opioid crisis. Yet there are very few if any successful interventions that can restore the tissue's structure and function while also addressing the symptomatic pain. Here we have developed a novel non-viral gene therapy, using engineered extracellular vesicles (eEVs) to deliver the developmental transcription factor FOXF1 to the degenerated IVD in an in vivo model. Injured IVDs treated with eEVs loaded with FOXF1 demonstrated robust sex-specific reductions in pain behaviors compared to control groups. Furthermore, significant restoration of IVD structure and function in animals treated with FOXF1 eEVs were observed, with significant increases in disc height, tissue hydration, proteoglycan content, and mechanical properties. This is the first study to successfully restore tissue function while modulating pain behaviors in an animal model of DBP using eEV-based non-viral delivery of transcription factor genes. Such a strategy can be readily translated to other painful musculoskeletal disorders.


Assuntos
Vesículas Extracelulares , Terapia Genética , Degeneração do Disco Intervertebral , Animais , Vesículas Extracelulares/metabolismo , Terapia Genética/métodos , Feminino , Masculino , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Disco Intervertebral/patologia , Ratos Sprague-Dawley , Dor nas Costas/terapia , Dor nas Costas/genética , Dor Lombar/terapia
2.
JOR Spine ; 6(3): e1270, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780832

RESUMO

Background: Intervertebral disc (IVD) degeneration is a major contributor to low back pain (LBP), yet there are no clinical therapies targeting the underlying pathology. The annulus fibrosus (AF) plays a critical role in maintaining IVD structure/function and undergoes degenerative changes such as matrix catabolism and inflammation. Thus, therapies targeting the AF are crucial to fully restore IVD function. Previously, we have shown nonviral delivery of transcription factors to push diseased nucleus pulposus cells to a healthy phenotype. As a next step in a proof-of-concept study, we report the use of Scleraxis (SCX) and Mohawk (MKX), which are critical for the development, maintenance, and regeneration of the AF and may have therapeutic potential to induce a healthy, pro-anabolic phenotype in diseased AF cells. Methods: MKX and SCX plasmids were delivered via electroporation into diseased human AF cells from autopsy specimens and patients undergoing surgery for LBP. Transfected cells were cultured over 14 days and assessed for cell morphology, viability, density, gene expression of key phenotypic, inflammatory, matrix, pain markers, and collagen accumulation. Results: AF cells demonstrated a fibroblastic phenotype posttreatment. Moreover, transfection of SCX and MKX resulted in significant upregulation of the respective genes, as well as SOX9. Transfected autopsy cells demonstrated upregulation of core extracellular matrix markers; however, this was observed to a lesser effect in surgical cells. Matrix-degrading enzymes and inflammatory cytokines were downregulated, suggesting a push toward a pro-anabolic, anti-inflammatory phenotype. Similarly, pain markers were downregulated over time in autopsy cells. At the protein level, collagen content was increased in both MKX and SCX transfected cells compared to controls. Conclusions: This exploratory study demonstrates the potential of MKX or SCX to drive reprogramming in mild to moderately degenerate AF cells from autopsy and severely degenerate AF cells from surgical patients toward a healthy phenotype and may be a potential nonviral gene therapy for LBP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...