Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Cell ; 71: 101589, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34274592

RESUMO

The liver has multiple functions that change throughout ontogeny. South American camelids (SAC) have unique characteristics related to adaptation to extreme environments and metabolism. However, the process of hepatic cell differentiation has not been studied in any SAC. We study the patterns of cell differentiation and proliferation in the liver of the alpaca at different times of the ontogeny, excluding the hematopoietic components. Immunohistochemical techniques were performed in 66 specimens, including embryos, fetuses, neonates and adults. Supplementary analyses were performed by lectinhistochemistry. The hepatocytic differentiation was performed by the identification of Hepatocyte (Clone: ​​OCH1ES Dako®). It began in the specimens of 1.8-2.5 cm of crown to rump length (CRL), from Days 25-29 (ovulation = Day 0), continued during gestation and intensified towards its end. The cholangiocytic differentiation was performed by the identification of cytokeratin 7 (CK7, Dako®). It was manifested at the final of gestation (specimens of 28.4 cm CRL, from Day 223 onwards). Parenchymal cells underwent a process of gradual differentiation (differentiation of hepatocytes preceded that of cholangiocytes). Cell proliferation was observed along gestation using the nuclear proliferation antigen (PCNA) and Ki-67. Hepatic organogenesis in the alpacas shares similar differentiation and proliferation mechanisms with other altricial, but phylogenetically distant, species.


Assuntos
Antígenos de Diferenciação/metabolismo , Camelídeos Americanos/embriologia , Diferenciação Celular , Proliferação de Células , Hepatócitos/metabolismo , Fígado/embriologia , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...