Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(26): e202402638, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38591826

RESUMO

Alkenes constitute an enabling motif in organic synthesis, as they can be functionalized to form highly substituted molecules. Z-alkenes are generally challenging to access due to the thermodynamic preference for the formation of E-alkenes compared to Z-alkenes. Dehydrogenation methodologies to selectively form Z-alkenes have not yet been reported. Herein, we report a Z-selective, propargylic dehydrogenation that provides 1,3-enynes through the invention of a Co-catalyzed oxidation system. Observation of a kinetic isotope effect (KIE) revealed that deprotonation of the propargylic position is the rate limiting step. Additionally, isomerization experiments were conducted and confirmed that the observed Z-selectivity is a kinetic effect. A proposed stereomechanistic model for the Z-selectivity is included.

2.
J Org Chem ; 89(5): 3123-3132, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377547

RESUMO

Introducing degrees of unsaturation into small molecules is a central transformation in organic synthesis. A strategically useful category of this reaction type is the conversion of alkanes into alkenes for substrates with an adjacent electron-withdrawing group. An efficient strategy for this conversion has been deprotonation to form a stabilized organozinc intermediate that can be subjected to α,ß-dehydrogenation through palladium or nickel catalysis. This general reactivity blueprint presents a window to uncover and understand the reactivity of Pd- and Ni-enolates. Within this context, it was determined that ß-hydride elimination is slow and proceeds via concerted syn-elimination. One interesting finding is that ß-hydride elimination can be preferred to a greater extent than C-C bond formation for Ni, more so than with Pd, which defies the generally assumed trends that ß-hydride elimination is more facile with Pd than Ni. The discussion of these findings is informed by KIE experiments, DFT calculations, stoichiometric reactions, and rate studies. Additionally, this report details an in-depth analysis of a methodological manifold for practical dehydrogenation and should enable its application to challenges in organic synthesis.

3.
Org Lett ; 25(45): 8156-8161, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37939227

RESUMO

A proline-squaraine ligand (Pro-SqEB) that demonstrates high levels of stereoselectivity in olefin cyclopropanations when anchored to a Rh2II scaffold is introduced. High yields and enantioselectivities were achieved in the cyclopropanation of alkenes with diazo compounds in the presence of Rh2(Pro-SqEB)4. Notably, the unique electronic and steric design of this catalyst enabled the use of polar solvents that are otherwise incompatible with most RhII complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA