Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 35, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782237

RESUMO

BACKGROUND: Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, exhibit great potential for the diagnosis and treatment of brain disorders, representing a valuable tool for precision medicine. The latter demands high-quality human biospecimens, especially in complex disorders in which pathological and specimen heterogeneity, as well as diverse individual clinical profile, often complicate the development of precision therapeutic schemes and patient-tailored treatments. Thus, the collection and characterization of physiologically relevant sEVs are of the utmost importance. However, standard brain EV isolation approaches rely on tissue dissociation, which can contaminate EV fractions with intracellular vesicles. METHODS: Based on multiscale analytical platforms such as cryo-EM, label-free proteomics, advanced flow cytometry, and ExoView analyses, we compared and characterized the EV fraction isolated with this novel method with a classical digestion-based EV isolation procedure. Moreover, EV biogenesis was pharmacologically manipulated with either GW4869 or picrotoxin to assess the validity of the spontaneous-release method, while the injection of labelled-EVs into the mouse brain further supported the integrity of the isolated vesicles. RESULTS: We hereby present an efficient purification method that captures a sEV-enriched population spontaneously released by mouse and human brain tissue. In addition, we tested the significance of the release method under conditions where biogenesis/secretion of sEVs was pharmacologically manipulated, as well as under animals' exposure to chronic stress, a clinically relevant precipitant of brain pathologies, such as depression and Alzheimer's disease. Our findings show that the released method monitors the drug-evoked inhibition or enhancement of sEVs secretion while chronic stress induces the secretion of brain exosomes accompanied by memory loss and mood deficits suggesting a potential role of sEVs in the brain response to stress and related stress-driven brain pathology. CONCLUSIONS: Overall, the spontaneous release method of sEV yield may contribute to the characterization and biomarker profile of physiologically relevant brain-derived sEVs in brain function and pathology. Video Abstract.


Assuntos
Doença de Alzheimer , Exossomos , Vesículas Extracelulares , Humanos , Animais , Camundongos , Encéfalo , Biomarcadores
2.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362114

RESUMO

Diffuse large B cell lymphoma (DLBCL) is an aggressive B cell lymphoma characterized by a heterogeneous behavior and in need of more accurate biological characterization monitoring and prognostic tools. Extracellular vesicles are secreted by all cell types and are currently established to some extent as representatives of the cell of origin. The present study characterized and evaluated the diagnostic and prognostic potential of plasma extracellular vesicles (EVs) proteome in DLBCL by using state-of-the-art mass spectrometry. The EV proteome is strongly affected by DLBCL status, with multiple proteins uniquely identified in the plasma of DLBCL. A proof-of-concept classifier resulted in highly accurate classification with a sensitivity and specificity of 1 when tested on the holdout test data set. On the other hand, no proteins were identified to correlate with non-germinal center B-cell like (non-GCB) or GCB subtypes to a significant degree after correction for multiple testing. However, functional analysis suggested that antigen binding is regulated when comparing non-GCB and GCB. Survival analysis based on protein quantitative values and clinical parameters identified multiple EV proteins as significantly correlated to survival. In conclusion, the plasma extracellular vesicle proteome identifies DLBCL cancer patients from healthy donors and contains potential EV protein markers for prediction of survival.


Assuntos
Vesículas Extracelulares , Linfoma Difuso de Grandes Células B , Humanos , Proteoma , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/patologia , Vesículas Extracelulares/patologia
3.
Sci Adv ; 7(30)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290090

RESUMO

FUsed in Sarcoma (FUS) is a multifunctional RNA binding protein (RBP). FUS mutations lead to its cytoplasmic mislocalization and cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we use mouse and human models with endogenous ALS-associated mutations to study the early consequences of increased cytoplasmic FUS. We show that in axons, mutant FUS condensates sequester and promote the phase separation of fragile X mental retardation protein (FMRP), another RBP associated with neurodegeneration. This leads to repression of translation in mouse and human FUS-ALS motor neurons and is corroborated in vitro, where FUS and FMRP copartition and repress translation. Last, we show that translation of FMRP-bound RNAs is reduced in vivo in FUS-ALS motor neurons. Our results unravel new pathomechanisms of FUS-ALS and identify a novel paradigm by which mutations in one RBP favor the formation of condensates sequestering other RBPs, affecting crucial biological functions, such as protein translation.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Camundongos , Mutação , Biossíntese de Proteínas , Proteína FUS de Ligação a RNA/genética
4.
Front Cell Dev Biol ; 8: 593750, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195266

RESUMO

Extracellular Vesicles (EVs), membrane vesicles released by all cells, are emerging mediators of cell-cell communication. By carrying biomolecules from tissues to biofluids, EVs have attracted attention as non-invasive sources of clinical biomarkers in liquid biopsies. EVs-based liquid biopsies usually require EVs isolation before content analysis, which frequently increases sample volume requirements. We here present a Flow Cytometry (FC) strategy that does not require isolation or concentration of EVs prior to staining. By doing so, it enables population analysis of EVs in samples characterized by challenging small volumes, while reducing overall sample processing time. To illustrate its application, we performed longitudinal non-lethal population analysis of EVs in mouse plasma and in single-animal collections of murine vitreous humor. By quantifying the proportion of vesicular particles in purified and non-purified biological samples, this method also serves as a precious tool to quality control isolates of EVs purified by different protocols. Our FC strategy has an unexplored clinical potential to analyze EVs in biofluids with intrinsically limited volumes and to multiply the number of different analytes in EVs that can be studied from a single collection of biofluid.

5.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233545

RESUMO

Acellular bronchoalveolar lavage (BAL) proteomics can partially separate lung cancer from non-lung cancer patients based on principal component analysis and multivariate analysis. Furthermore, the variance in the proteomics data sets is correlated mainly with lung cancer status and, to a lesser extent, smoking status and gender. Despite these advances BAL small and large extracellular vehicles (EVs) proteomes reveal aberrant protein expression in paracrine signaling mechanisms in cancer initiation and progression. We consequently present a case-control study of 24 bronchoalveolar lavage extracellular vesicle samples which were analyzed by state-of-the-art liquid chromatography-mass spectrometry (LC-MS). We obtained evidence that BAL EVs proteome complexity correlated with lung cancer stage 4 and mortality within two years´ follow-up (p value = 0.006). The potential therapeutic target DNMT3B complex is significantly up-regulated in tumor tissue and BAL EVs. The computational analysis of the immune and fibroblast cell markers in EVs suggests that patients who deceased within the follow-up period display higher marker expression indicative of innate immune and fibroblast cells (four out of five cases). This study provides insights into the proteome content of BAL EVs and their correlation to clinical outcomes.

6.
J Clin Invest ; 130(11): 6080-6092, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32790644

RESUMO

No treatment for frontotemporal dementia (FTD), the second most common type of early-onset dementia, is available, but therapeutics are being investigated to target the 2 main proteins associated with FTD pathological subtypes: TDP-43 (FTLD-TDP) and tau (FTLD-tau). Testing potential therapies in clinical trials is hampered by our inability to distinguish between patients with FTLD-TDP and FTLD-tau. Therefore, we evaluated truncated stathmin-2 (STMN2) as a proxy of TDP-43 pathology, given the reports that TDP-43 dysfunction causes truncated STMN2 accumulation. Truncated STMN2 accumulated in human induced pluripotent stem cell-derived neurons depleted of TDP-43, but not in those with pathogenic TARDBP mutations in the absence of TDP-43 aggregation or loss of nuclear protein. In RNA-Seq analyses of human brain samples from the NYGC ALS cohort, truncated STMN2 RNA was confined to tissues and disease subtypes marked by TDP-43 inclusions. Last, we validated that truncated STMN2 RNA was elevated in the frontal cortex of a cohort of patients with FTLD-TDP but not in controls or patients with progressive supranuclear palsy, a type of FTLD-tau. Further, in patients with FTLD-TDP, we observed significant associations of truncated STMN2 RNA with phosphorylated TDP-43 levels and an earlier age of disease onset. Overall, our data uncovered truncated STMN2 as a marker for TDP-43 dysfunction in FTD.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Lobo Frontal/metabolismo , Demência Frontotemporal/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Estatmina/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Lobo Frontal/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Estatmina/genética
7.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610589

RESUMO

The tumor microenvironment has gained a lot of attention from the scientific community since it has a proven impact in the development of tumor progression and metastasis. Extracellular vesicles (EVs) are now considered one of the key players of tumor microenvironment modulation. Clear cell renal cell carcinoma (ccRCC) is the most lethal urological neoplasia and presents a high metastatic potential, which reinforces the need for the development of more effective predictive biomarkers. Our goal was to evaluate the applicability of EV-derived matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as prognostic biomarkers for ccRCC. To do so, we studied the plasma EV content of 32 patients with localized ccRCC and 29 patients with metastatic ccRCC. We observed that patients with localized disease and tumors larger than 7 cm presented higher levels of plasma EV-derived TIMP-1 mRNA when compared with patients presenting smaller tumors (p = 0.020). Moreover, patients with metastatic disease presented higher levels of EV-derived TIMP-1 mRNA when compared with patients with localized disease (p = 0.002) and when we stratified those patients in high and low levels of TIMP-1 EV-derived mRNA, the ones presenting higher levels had a lower overall survival (p = 0.030). EV-derived TIMP-1 mRNA may be a good prognostic biomarker candidate for ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Vesículas Extracelulares/patologia , Feminino , Humanos , Neoplasias Renais/patologia , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Projetos Piloto , Plasma , Prognóstico , RNA Mensageiro/genética , Inibidor Tecidual de Metaloproteinase-1/análise , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
8.
Nucleic Acids Res ; 48(12): 6889-6905, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479602

RESUMO

Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a widespread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.


Assuntos
Esclerose Lateral Amiotrófica/genética , Homeostase/genética , Proteína FUS de Ligação a RNA/genética , Animais , Citoplasma/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Íntrons/genética , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Mutação/genética , Splicing de RNA/genética , Superóxido Dismutase-1/genética , Proteína com Valosina/genética
9.
Cancers (Basel) ; 12(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498409

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most aggressive subtype of kidney cancer and up to 40% of patients submitted to surgery with a curative intent will relapse. Thus, the aim of this study was to analyze the applicability of an Extracellular vesicle (EV) derived miRNA profile as potential prognosis biomarkers in ccRCC patients. We analyzed a nine-miRNA profile in plasma EVs from 32 ccRCC patients with localized disease (before and after surgery) and in 37 patients with metastatic disease. We observed that the levels of EV-derived hsa-miR-25-3p, hsa-miR-126-5p, hsa-miR-200c-3p, and hsa-miR-301a-3p decreased after surgery, whereas hsa-miR-1293 EV-levels increased. Furthermore, metastatic patients presented higher levels of hsa-miR-301a-3p and lower levels of hsa-miR-1293 when compared to patients with localized disease after surgery. Functional enrichment analysis of the targets of the four miRNAs that decreased after surgery resulted in an enrichment of terms related to cell cycle, proliferation, and metabolism, suggesting that EV-miRNA enrichment in the presence of the tumor could represent an epigenetic mechanism to sustain tumor development. Taken together, these results suggest that EVs content varies depending on the presence or absence of the disease and that an increase of EV-derived hsa-miR-301a-3p, and decrease of EV-derived hsa-miR-1293, may be potential biomarkers of metastatic ccRCC.

10.
Front Biosci (Landmark Ed) ; 25(3): 398-436, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585894

RESUMO

Through lateral transfer, extra-cellular vesicles (EVs) transport their DNA, miRNA, mRNA and proteins such as enzymes mediating drug resistance, transporters as well as growth factors to neighboring cells. By virtue of this horizontal transfer, EVs potentially regulate cell growth, migration, angiogenesis and metastasis and increase tissue permeability in cancer. Furthermore, EVs regulate immune factors and allow the tumor cells to evade immune recognition and cell death. To explore if the proteomes of exosomes support functional transfer of cancer hallmarks, in this meta-analysis, we compared EVs and whole cell proteomes from the NCI-60 human tumor cell line panel. We observed a subgroup of proteins in each cancer hallmark signature as highly abundant and consistently expressed in EVs from all cell lines. Among these were oncoproteins frequently targeted in cancer therapies whose presence on EVs could potentially render therapies less effective by serving as decoys.


Assuntos
Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Proteínas Oncogênicas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Linhagem Celular Tumoral , Humanos , Neoplasias/patologia , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
11.
ACS Sens ; 4(8): 2073-2083, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31327232

RESUMO

Breast cancer accounts for 11.6% of all cancer cases in both genders. Even though several diagnostic techniques have been developed, the mostly used are invasive, complex, time-consuming, and cannot guarantee an early diagnosis, significantly constraining the tumor treatment success rate. Exosomes are extracellular vesicles that carry biomolecules from tissues to the peripheral circulation, representing an emerging noninvasive source of markers for early cancer diagnosis. Current techniques for exosomes analysis are frequently complex, time-consuming, and expensive. Raman spectroscopy interest has risen lately, because of its nondestructive analysis and little to no sample preparation, while having very low analyte concentration/volume, because of surface enhancement signal (SERS) possibility. However, active SERS substrates are needed, and commercially available substrates come with a high cost and low shelf life. In this work, composites of commercial nata de coco to produce bacterial nanocellulose and in-situ-synthesized silver nanoparticles are tested as SERS substrates, with a low cost and green approach. Enhancement factors from 104 to 105 were obtained, detecting Rhodamine 6G (R6G) concentrations as low as 10-11 M. Exosome samples coming from MCF-10A (nontumorigenic breast epithelium) and MDA-MB-231 (breast cancer) cell cultures were tested on the synthesized substrates, and the obtained Raman spectra were subjected to statistical principal component analysis (PCA). Combining PCA with Raman intravariability and intervariability in exosomal samples, data grouping with 95% confidence was possible, serving as a low-cost, green, and label-free diagnosis method, with promising applicability in clinical settings.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama/diagnóstico , Técnicas Eletroquímicas , Exossomos/química , Nanotecnologia , Feminino , Humanos , Células Tumorais Cultivadas
12.
EMBO J ; 37(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29764981

RESUMO

TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Éxons/genética , Humanos , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Splicing de RNA/genética
13.
Sci Rep ; 7(1): 5365, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710397

RESUMO

Lamellipodin (Lpd) functions as an important signalling integrator downstream of growth factor and axon guidance receptors. Mechanistically, Lpd promotes actin polymerization by interacting with F-actin and the actin effectors Ena/VASP proteins and the SCAR/WAVE complex. Thereby, Lpd supports lamellipodia protrusion, cell migration and endocytosis. In the mammalian central nervous system, Lpd contributes to neuronal morphogenesis, neuronal migration during development and its C. elegans orthologue MIG-10 also supports synaptogenesis. However, the consequences of loss of Lpd in the CNS on behaviour are unknown. In our current study, we crossed our Lpd conditional knockout mice with a mouse line expressing Cre under the CNS specific Nestin promoter to restrict the genetic ablation of Lpd to the central nervous system. Detailed behavioural analysis of the resulting Nestin-Cre-Lpd knockout mouse line revealed a specific behavioural phenotype characterised by hyperactivity and increased anxiety.


Assuntos
Ansiedade/genética , Comportamento Animal , Hipercinese/genética , Proteínas de Membrana/genética , Animais , Camundongos , Camundongos Knockout , Nestina/genética , Nestina/metabolismo
14.
J Cell Biol ; 203(4): 673-89, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24247431

RESUMO

Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd's Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.


Assuntos
Movimento Celular , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Xenopus/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Células Epiteliais/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Melanócitos/citologia , Melanócitos/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Células NIH 3T3 , Crista Neural/citologia , Crista Neural/metabolismo , Pigmentação , Ligação Proteica , Pseudópodes/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Domínios de Homologia de src
15.
EMBO J ; 32(20): 2722-34, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24076656

RESUMO

The epidermal growth factor receptor (EGFR) plays an essential role during development and diseases including cancer. Lamellipodin (Lpd) is known to control lamellipodia protrusion by regulating actin filament elongation via Ena/VASP proteins. However, it is unknown whether this mechanism supports endocytosis of the EGFR. Here, we have identified a novel role for Lpd and Mena in clathrin-mediated endocytosis (CME) of the EGFR. We have discovered that endogenous Lpd is in a complex with the EGFR and Lpd and Mena knockdown impairs EGFR endocytosis. Conversely, overexpressing Lpd substantially increases the EGFR uptake in an F-actin-dependent manner, suggesting that F-actin polymerization is limiting for EGFR uptake. Furthermore, we found that Lpd directly interacts with endophilin, a BAR domain containing protein implicated in vesicle fission. We identified a role for endophilin in EGFR endocytosis, which is mediated by Lpd. Consistently, Lpd localizes to clathrin-coated pits (CCPs) just before vesicle scission and regulates vesicle scission. Our findings suggest a novel mechanism in which Lpd mediates EGFR endocytosis via Mena downstream of endophilin.


Assuntos
Actinas/fisiologia , Aciltransferases/fisiologia , Proteínas de Transporte/fisiologia , Endocitose/genética , Receptores ErbB/metabolismo , Proteínas de Membrana/fisiologia , Proteínas dos Microfilamentos/fisiologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiologia , Actinas/genética , Actinas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Invaginações Revestidas da Membrana Celular/fisiologia , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Células NIH 3T3 , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
Nat Rev Neurosci ; 11(9): 609, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20803787
17.
Nat Rev Neurosci ; 11(8): 534, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20672425
18.
Nat Rev Neurosci ; 11(8): 536-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20672428
19.
Nat Rev Neurosci ; 11(5): 297, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20419860
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...