Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Nat Commun ; 14(1): 3398, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311748

RESUMO

Understanding the neural processes governing the human gut-brain connection has been challenging due to the inaccessibility of the body's interior. Here, we investigated neural responses to gastrointestinal sensation using a minimally invasive mechanosensory probe by quantifying brain, stomach, and perceptual responses following the ingestion of a vibrating capsule. Participants successfully perceived capsule stimulation under two vibration conditions (normal and enhanced), as evidenced by above chance accuracy scores. Perceptual accuracy improved significantly during the enhanced relative to normal stimulation, which was associated with faster stimulation detection and reduced reaction time variability. Capsule stimulation induced late neural responses in parieto-occipital electrodes near the midline. Moreover, these 'gastric evoked potentials' showed intensity-dependent increases in amplitude and were significantly correlated with perceptual accuracy. Our results replicated in a separate experiment, and abdominal X-ray imaging localized most capsule stimulations to the gastroduodenal segments. Combined with our prior observation that a Bayesian model is capable of estimating computational parameters of gut-brain mechanosensation, these findings highlight a unique form of enterically-focused sensory monitoring within the human brain, with implications for understanding gut feelings and gut-brain interactions in healthy and clinical populations.


Assuntos
Encéfalo , Emoções , Humanos , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Eletrodos , Nível de Saúde
2.
Brain Behav ; 12(10): e2667, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36134450

RESUMO

Recent studies suggest that transcranial electrical stimulation (tES) can be performed during functional magnetic resonance imaging (fMRI). The novel approach of using concurrent tES-fMRI to modulate and measure targeted brain activity/connectivity may provide unique insights into the causal interactions between the brain neural responses and psychiatric/neurologic signs and symptoms, and importantly, guide the development of new treatments. However, tES stimulation parameters to optimally influence the underlying brain activity may vary with respect to phase difference, frequency, intensity, and electrode's montage among individuals. Here, we propose a protocol for closed-loop tES-fMRI to optimize the frequency and phase difference of alternating current stimulation (tACS) for two nodes (frontal and parietal regions) in individual participants. We carefully considered the challenges in an online optimization of tES parameters with concurrent fMRI, specifically in its safety, artifact in fMRI image quality, online evaluation of the tES effect, and parameter optimization method, and we designed the protocol to run an effective study to enhance frontoparietal connectivity and working memory performance with the optimized tACS using closed-loop tES-fMRI. We provide technical details of the protocol, including electrode types, electrolytes, electrode montages, concurrent tES-fMRI hardware, online fMRI processing pipelines, and the optimization algorithm. We confirmed the implementation of this protocol worked successfully with a pilot experiment.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Artefatos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Estimulação Transcraniana por Corrente Contínua/métodos
3.
Front Hum Neurosci ; 16: 910951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721350

RESUMO

Real-time fMRI (rt-fMRI) neurofeedback can be used to non-invasively modulate brain activity and has shown initial effectiveness in symptom reduction for psychiatric disorders. Neurofeedback paradigms often target the neurocircuitry underlying emotion regulation, as difficulties with emotion regulation are common across many psychiatric conditions. Adolescence is a key period for the development of emotion regulation, with the parent-adolescent relationship providing an important context for learning how to modulate one's emotions. Here, we present evidence for a novel extension of rt-fMRI neurofeedback wherein a second person (the parent) views neurofeedback from the focal participant (adolescent) and attempts to regulate the other person's brain activity. In this proof-of-concept study, mother-adolescent dyads (n = 6; all female) participated in a dyadic neurofeedback protocol, during which they communicated via active noise-canceling microphones and headphones. During the scan, adolescents described current emotionally upsetting situations in their lives, and their mothers responded while viewing neurofeedback from the adolescent's right anterior insular cortex (aIC)-a key hub for emotion-related processing. The mother was instructed to supportively respond to her daughter's negative emotions and attempt to downregulate the aIC activity. Mean right aIC activation during each run was calculated for each adolescent participant, and results revealed a downward trend across the session (ß = -0.17, SE ß = 0.19, Cohen's f 2 = 0.03). Results of this proof-of-concept study support further research using dyadic neurofeedback to target emotion-related processing. Future applications may include therapist-client dyads and continued research with parents and children. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT03929263].

4.
Front Neurosci ; 16: 834827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360171

RESUMO

Real-time fMRI (rtfMRI) has enormous potential for both mechanistic brain imaging studies or treatment-oriented neuromodulation. However, the adaption of rtfMRI has been limited due to technical difficulties in implementing an efficient computational framework. Here, we introduce a python library for real-time fMRI (rtfMRI) data processing systems, Real-Time Processing System in python (RTPSpy), to provide building blocks for a custom rtfMRI application with extensive and advanced functionalities. RTPSpy is a library package including (1) a fast, comprehensive, and flexible online fMRI image processing modules comparable to offline denoising, (2) utilities for fast and accurate anatomical image processing to define an anatomical target region, (3) a simulation system of online fMRI processing to optimize a pipeline and target signal calculation, (4) simple interface to an external application for feedback presentation, and (5) a boilerplate graphical user interface (GUI) integrating operations with RTPSpy library. The fast and accurate anatomical image processing utility wraps external tools, including FastSurfer, ANTs, and AFNI, to make tissue segmentation and region of interest masks. We confirmed that the quality of the output masks was comparable with FreeSurfer, and the anatomical image processing could complete in a few minutes. The modular nature of RTPSpy provides the ability to use it for a simulation analysis to optimize a processing pipeline and target signal calculation. We present a sample script for building a real-time processing pipeline and running a simulation using RTPSpy. The library also offers a simple signal exchange mechanism with an external application using a TCP/IP socket. While the main components of the RTPSpy are the library modules, we also provide a GUI class for easy access to the RTPSpy functions. The boilerplate GUI application provided with the package allows users to develop a customized rtfMRI application with minimum scripting labor. The limitations of the package as it relates to environment-specific implementations are discussed. These library components can be customized and can be used in parts. Taken together, RTPSpy is an efficient and adaptable option for developing rtfMRI applications. Code available at: https://github.com/mamisaki/RTPSpy.

5.
Cogn Affect Behav Neurosci ; 22(4): 849-867, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292905

RESUMO

Mindfulness training (MT) promotes the development of one's ability to observe and attend to internal and external experiences with objectivity and nonjudgment with evidence to improve psychological well-being. Real-time functional MRI neurofeedback (rtfMRI-nf) is a noninvasive method of modulating activity of a brain region or circuit. The posterior cingulate cortex (PCC) has been hypothesized to be an important hub instantiating a mindful state. This nonrandomized, single-arm study examined the feasibility and tolerability of training typically developing adolescents to self-regulate the posterior cingulate cortex (PCC) using rtfMRI-nf during MT. Thirty-four adolescents (mean age: 15 years; 14 females) completed the neurofeedback augmented mindfulness training task, including Focus-on-Breath (MT), Describe (self-referential thinking), and Rest conditions, across three neurofeedback and two non-neurofeedback runs (Observe, Transfer). Self-report assessments demonstrated the feasibility and tolerability of the task. Neurofeedback runs differed significantly from non-neurofeedback runs for the Focus-on-Breath versus Describe contrast, characterized by decreased activity in the PCC during the Focus-on-Breath condition (z = -2.38 to -6.27). MT neurofeedback neural representation further involved the medial prefrontal cortex, anterior cingulate cortex, dorsolateral prefrontal cortex, posterior insula, hippocampus, and amygdala. State awareness of physical sensations increased following rtfMRI-nf and was maintained at 1-week follow-up (Cohens' d = 0.69). Findings demonstrate feasibility and tolerability of rtfMRI-nf in healthy adolescents, replicates the role of PCC in MT, and demonstrate a potential neuromodulatory mechanism to leverage and streamline the learning of mindfulness practice. ( ClinicalTrials.gov identifier #NCT04053582; August 12, 2019).


Assuntos
Atenção Plena , Autocontrole , Adolescente , Estudos de Viabilidade , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos
6.
Brain Sci ; 12(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35326319

RESUMO

Mindfulness training (MT) reduces self-referential processing and promotes interoception, the perception of sensations from inside the body, by increasing one's awareness of and regulating responses to them. The posterior cingulate cortex (PCC) and the insular cortex (INS) are considered hubs for self-referential processing and interoception, respectively. Although MT has been consistently found to decrease PCC, little is known about how MT relates to INS activity. Understanding links between mindfulness and interoception may be particularly important for informing mental health in adolescence, when neuroplasticity and emergence of psychopathology are heightened. We examined INS activity during real-time functional magnetic resonance imaging neurofeedback-augmented mindfulness training (NAMT) targeting the PCC. Healthy adolescents (N = 37; 16 female) completed the NAMT task, including Focus-on-Breath (MT), Describe (self-referential processing), and Rest conditions, across three neurofeedback runs and two non-neurofeedback runs (Observe, Transfer). Regression coefficients estimated from the generalized linear model were extracted from three INS subregions: anterior (aINS), mid (mINS), and posterior (pINS). Mixed model analyses revealed the main effect of run for Focus-on-Breath vs. Describe contrast in aINS [R2 = 0.39] and pINS [R2 = 0.33], but not mINS [R2 = 0.34]. Post hoc analyses revealed greater aINS activity and reduced pINS activity during neurofeedback runs, and such activities were related to lower self-reported life satisfaction and less pain behavior, respectively. These findings revealed the specific involvement of insula subregions in rtfMRI-nf MT.

7.
Res Child Adolesc Psychopathol ; 50(2): 149-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35113308

RESUMO

Parents' emotion socialization (ES) practices impact socioemotional development throughout adolescence. Little is known, however, regarding the neurobiology underlying these effects. This study used functional magnetic resonance imaging (fMRI) to examine how parent ES practices relate to adolescent brain function during emotion processing. Thirty-three adolescents (ages 14-16) reported on ES practices of a focal parent (primarily mothers) using the Emotions as a Child (EAC) Scale. Adolescents also completed a conflict discussion task with this parent, and parents' statements were coded for emotional valence. Adolescents performed two fMRI tasks: a standard emotion processing (EP) task (n = 32) and the Testing Emotional Attunement and Mutuality (TEAM) task (n = 27). The EP task consisted of viewing emotional pictures and either reacting naturally or using cognitive reappraisal to regulate emotional responses. The TEAM task was performed with the parent and included trials during which adolescents were shown that their parent made an error, costing the dyad $5. Parent negative verbalizations during the conflict discussion were associated with greater activity in the thalamus during the emotion reactivity condition of the EP task and in the thalamus, superior medial and superior frontal gyri, anterior insula, and dorsolateral prefrontal cortex during the costly error condition of the TEAM task. Unsupportive ES was associated with greater activity in the supplementary motor area and less activity in the paracentral gyrus and amygdala during the costly error condition of the TEAM task. This study supports the premise that ES influences adolescents' emotion-related neural processing, particularly when using ecologically valid tasks in social contexts.


Assuntos
Imageamento por Ressonância Magnética , Socialização , Adolescente , Criança , Emoções/fisiologia , Feminino , Humanos , Neurobiologia , Pais/psicologia
8.
JAMA Psychiatry ; 79(4): 323-332, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107563

RESUMO

IMPORTANCE: ß-Adrenergic stimulation elicits heart palpitations and dyspnea, key features of acute anxiety and sympathetic arousal, yet no neuroimaging studies have examined how the pharmacologic modulation of interoceptive signals is associated with fear-related neurocircuitry in individuals with generalized anxiety disorder (GAD). OBJECTIVE: To examine the neural circuitry underlying autonomic arousal induced via isoproterenol, a rapidly acting, peripheral ß-adrenergic agonist akin to adrenaline. DESIGN, SETTING, AND PARTICIPANTS: This crossover randomized clinical trial of 58 women with artifact-free data was conducted from January 1, 2017, to November 31, 2019, at the Laureate Institute for Brain Research in Tulsa, Oklahoma. EXPOSURES: Functional magnetic resonance imaging was used to assess neural responses during randomized intravenous bolus infusions of isoproterenol (0.5 and 2.0 µg) and saline, each administered twice in a double-blind fashion. MAIN OUTCOMES AND MEASURES: Blood oxygen level-dependent responses across the whole brain during isoproterenol administration in patients with GAD vs healthy comparators. Cardiac and respiratory responses, as well as interoceptive awareness and anxiety, were also measured during the infusion protocol. RESULTS: Of the 58 female study participants, 29 had GAD (mean [SD] age, 26.9 [6.8] years) and 29 were matched healthy comparators (mean [SD] age, 24.4 [5.0] years). During the 0.5-µg dose of isoproterenol, the GAD group exhibited higher heart rate responses (b = 5.34; 95% CI, 2.06-8.61; P = .002), higher intensity ratings of cardiorespiratory sensations (b = 8.38; 95% CI, 2.05-14.71; P = .01), higher levels of self-reported anxiety (b = 1.04; 95% CI, 0.33-1.76; P = .005), and significant hypoactivation in the ventromedial prefrontal cortex (vmPFC) that was evident throughout peak response (Cohen d = 1.55; P < .001) and early recovery (Cohen d = 1.52; P < .001) periods. Correlational analysis of physiological and subjective indexes and percentage of signal change extracted during the 0.5-µg dose revealed that vmPFC hypoactivation was inversely correlated with heart rate (r56 = -0.51, adjusted P = .001) and retrospective intensity of both heartbeat (r56 = -0.50, adjusted P = .002) and breathing (r56 = -0.44, adjusted P = .01) sensations. Ventromedial prefrontal cortex hypoactivation correlated inversely with continuous dial ratings at a trend level (r56 = -0.38, adjusted P = .051), whereas anxiety (r56 = -0.28, adjusted P = .27) and chronotropic dose 25 (r56 = -0.14, adjusted P = .72) showed no such association. CONCLUSIONS AND RELEVANCE: In this crossover randomized clinical trial, women with GAD exhibited autonomic hypersensitivity during low levels of adrenergic stimulation characterized by elevated heart rate, heightened interoceptive awareness, increased anxiety, and a blunted neural response localized to the vmPFC. These findings support the notion that autonomic hyperarousal may be associated with regulatory dysfunctions in the vmPFC, which could serve as a treatment target to help patients with GAD more appropriately appraise and regulate signals of sympathetic arousal. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02615119.


Assuntos
Adrenérgicos , Transtornos de Ansiedade , Adulto , Transtornos de Ansiedade/tratamento farmacológico , Feminino , Humanos , Isoproterenol/farmacologia , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Estudos Retrospectivos , Adulto Jovem
9.
Brain Stimul ; 15(2): 337-351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35042056

RESUMO

BACKGROUND: Abnormalities in frontoparietal network (FPN) were observed in many neuropsychiatric diseases including substance use disorders. A growing number of studies are using dual-site-tACS with frontoparietal synchronization to engage this network. However, a computational pathway to inform and optimize parameter space for frontoparietal synchronization is still lacking. In this case study, in a group of participants with methamphetamine use disorders, we proposed a computational pathway to extract optimal electrode montage while accounting for stimulation intensity using structural and functional MRI. METHODS: Sixty methamphetamine users completed an fMRI drug cue-reactivity task. Four main steps were taken to define electrode montage and adjust stimulation intensity using 4x1 high-definition (HD) electrodes for a dual-site-tACS; (1) Frontal seed was defined based on the maximum electric fields (EF) predicted by simulation of HD montage over DLPFC (F3/F4 in EEG 10-10), (2) frontal seed-to-whole brain context-dependent correlation was calculated to determine connected regions to frontal seeds, (3) center of connected cluster in parietal cortex was selected as a location for placing the second set of HD electrodes to shape the informed montage, (4) individualized head models were used to determine optimal stimulation intensity considering underlying brain structure. The informed montage was compared to montages with large electrodes and classic frontoparietal HD montages (F3-P3/F4-P4) in terms of tACS-induced EF and ROI-to-ROI task-based/resting-state connectivity. RESULTS: Compared to the large electrodes, HD frontoparietal montages allow for a finer control of the spatial peak fields in the main nodes of the FPN at the cost of lower maximum EF (large-pad/HD: max EF[V/m] = 0.37/0.11, number of cortical sub-regions that EF exceeds 50% of the max = 77/13). For defining stimulation targets based on EF patterns, using group-level head models compared to a single standard head model results in comparable but significantly different seed locations (6.43 mm Euclidean distance between the locations of the frontal maximum EF in standard-space). As expected, significant task-based/resting-state connections were only found between frontal-parietal locations in the informed montage. Cue-induced craving score was correlated with frontoparietal connectivity only in the informed montage (r = -0.24). Stimulation intensity in the informed montage, and not in the classic HD montage, needs 40% reduction in the parietal site to reduce the disparity in EF between stimulation sites. CONCLUSION: This study provides some empirical insights to montage and dose selection in dual-site-tACS using individual brain structures and functions and proposes a computational pathway to use head models and functional MRI to define (1) optimum electrode montage for targeting FPN in a context of interest (drug-cue-reactivity) and (2) proper transcranial stimulation intensity.


Assuntos
Metanfetamina , Doenças do Sistema Nervoso , Estimulação Transcraniana por Corrente Contínua , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Estimulação Transcraniana por Corrente Contínua/métodos
10.
Brain Connect ; 12(4): 348-361, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34269609

RESUMO

Background/Introduction: Sex classification using functional connectivity from resting-state functional magnetic resonance imaging (rs-fMRI) has shown promising results. This suggested that sex difference might also be embedded in the blood-oxygen-level-dependent properties such as the amplitude of low-frequency fluctuation (ALFF) and the fraction of ALFF (fALFF). This study comprehensively investigates sex differences using a reliable and explainable machine learning (ML) pipeline. Five independent cohorts of rs-fMRI with over than 5500 samples were used to assess sex classification performance and map the spatial distribution of the important brain regions. Methods: Five rs-fMRI samples were used to extract ALFF and fALFF features from predefined brain parcellations and then were fed into an unbiased and explainable ML pipeline with a wide range of methods. The pipeline comprehensively assessed unbiased performance for within-sample and across-sample validation. In addition, the parcellation effect, classifier selection, scanning length, spatial distribution, reproducibility, and feature importance were analyzed and evaluated thoroughly in the study. Results: The results demonstrated high sex classification accuracies from healthy adults (area under the curve >0.89), while degrading for nonhealthy subjects. Sex classification showed moderate to good intraclass correlation coefficient based on parcellation. Linear classifiers outperform nonlinear classifiers. Sex differences could be detected even with a short rs-fMRI scan (e.g., 2 min). The spatial distribution of important features overlaps with previous results from studies. Discussion: Sex differences are consistent in rs-fMRI and should be considered seriously in any study design, analysis, or interpretation. Features that discriminate males and females were found to be distributed across several different brain regions, suggesting a complex mosaic for sex differences in rs-fMRI. Impact statement The presented study unraveled that sex differences are embedded in the blood-oxygen-level dependent (BOLD) and can be predicted using unbiased and explainable machine learning pipeline. The study revealed that psychiatric disorders and demographics might influence the BOLD signal and interact with the classification of sex. The spatial distribution of the important features presented here supports the notion that the brain is a mosaic of male and female features. The findings emphasize the importance of controlling for sex when conducting brain imaging analysis. In addition, the presented framework can be adapted to classify other variables from resting-state BOLD signals.


Assuntos
Encéfalo , Caracteres Sexuais , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Masculino , Oxigênio , Reprodutibilidade dos Testes
11.
J Neural Eng ; 18(6)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34937003

RESUMO

Objective.Electroencephalography (EEG) microstates (MSs), which reflect a large topographical representation of coherent electrophysiological brain activity, are widely adopted to study cognitive processes mechanisms and aberrant alterations in brain disorders. MS topographies are quasi-stable lasting between 60-120 ms. Some evidence suggests that MS are the electrophysiological signature of resting-state networks (RSNs). However, the spatial and functional interpretation of MS and their association with functional magnetic resonance imaging (fMRI) remains unclear.Approach. In a cohort of healthy subjects (n= 52), we conducted several statistical and machine learning (ML) approaches analyses on the association among MS spatio-temporal dynamics and the blood-oxygenation-level dependent (BOLD) simultaneous EEG-fMRI data using statistical and ML approaches.Main results.Our results using a generalized linear model showed that MS transitions were largely and negatively associated with BOLD signals in the somatomotor, visual, dorsal attention, and ventral attention fMRI networks with limited association within the default mode network. Additionally, a novel recurrent neural network (RNN) confirmed the association between MS transitioning and fMRI signal while revealing that MS dynamics can model BOLD signals and vice versa.Significance.Results suggest that MS transitions may represent the deactivation of fMRI RSNs and provide evidence that both modalities measure common aspects of undergoing brain neuronal activities. These results may help to better understand the electrophysiological interpretation of MS.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Fenômenos Eletrofisiológicos , Humanos , Imageamento por Ressonância Magnética/métodos
12.
J Affect Disord ; 295: 873-882, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706458

RESUMO

INTRODUCTION: Treatment effectiveness for major depressive disorder (MDD) is often affected by client non-adherence, dropout, and non-response. Identification of client characteristics predicting successful treatment completion and/or response (i.e., symptom reduction) may be an important tool to increase intervention effectiveness. It is unclear whether neural attenuations in reward processing associated with MDD predict behavioral treatment outcome. METHODS: This study aimed to determine whether blunted neural responses to reward at baseline differentiate MDD (n = 60; 41 with comorbid anxiety) and healthy control (HC; n = 40) groups; and predict MDD completion of and response to 7-10 sessions of behavior therapy. Participants completed a monetary incentive delay (MID) task. The N200, P300, contingent negative variation (CNV) event related potentials (ERPs) and behavioral responses (reaction time [RT], correct hits) were quantified and extracted for cross-sectional group analyses. ERPs and behavioral responses demonstrating group differences were then used to predict therapy completion and response within MDD. RESULTS: MDD exhibited faster RT and smaller P300 amplitudes than HC across conditions. Within the MDD group, treatment completers (n = 37) exhibited larger P300 amplitudes than non-completers (n = 21). LIMITATIONS: This study comprises secondary analyses of EEG data; thus task parameters are not optimized to examine feedback ERPs from the paradigm. We did not examine heterogenous presentations of MDD; however, severity and comorbidity did not influence findings. CONCLUSIONS: Previous studies suggest that P300 is an index of motivational salience and stimulus resource allocation. In sum, individuals who deploy greater neural resources to task demands are more likely to persevere in behavioral therapy.


Assuntos
Transtorno Depressivo Maior , Estudos Transversais , Transtorno Depressivo Maior/terapia , Humanos , Motivação , Tempo de Reação , Recompensa
13.
Transl Psychiatry ; 11(1): 464, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493708

RESUMO

Human cytomegalovirus (HCMV) is a neurotropic herpes virus known to cause neuropathology in patients with impaired immunity. Previously, we reported a reduction in the gray matter volume (GMV) of several brain regions in two independent samples of participants who were seropositive for HCMV (HCMV+) compared to matched participants who were seronegative for HCMV (HCMV-). In addition to an independent replication of the GMV findings, this study aimed to examine whether HCMV+ was associated with differences in resting-state functional connectivity (rsfMRI-FC). After balancing on 11 clinical/demographic variables using inverse probability of treatment weighting (IPTW), GMV and rsfMRI-FC were obtained from 99 participants with major depressive disorder (MDD) who were classified into 42 HCMV+ and 57 HCMV- individuals. Relative to the HCMV- group, the HCMV+ group showed a significant reduction of GMV in nine cortical regions. Volume reduction in the right lateral orbitofrontal cortex (standardized beta coefficient (SBC) = -0.32, [95%CI, -0.62 to -0.02]) and the left pars orbitalis (SBC = -0.34, [95%CI, -0.63 to -0.05]) in the HCMV+ group was also observed in the previous study. Regardless of the parcellation method or analytical approach, relative to the HCMV- group, the HCMV+ group showed hypoconnectivity between the hubs of the sensorimotor network (bilateral postcentral gyrus) and the hubs of the salience network (bilateral insula) with effect sizes ranging from SBC = -0.57 to -0.99. These findings support the hypothesis that a positive HCMV serostatus is associated with altered connectivity of regions that are important for stress and affective processing and further supports a possible etiological role of HCMV in depression.


Assuntos
Infecções por Citomegalovirus , Transtorno Depressivo Maior , Encéfalo , Infecções por Citomegalovirus/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
14.
Front Psychiatry ; 12: 682495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220587

RESUMO

Neuroscience studies require considerable bioinformatic support and expertise. Numerous high-dimensional and multimodal datasets must be preprocessed and integrated to create robust and reproducible analysis pipelines. We describe a common data elements and scalable data management infrastructure that allows multiple analytics workflows to facilitate preprocessing, analysis and sharing of large-scale multi-level data. The process uses the Brain Imaging Data Structure (BIDS) format and supports MRI, fMRI, EEG, clinical, and laboratory data. The infrastructure provides support for other datasets such as Fitbit and flexibility for developers to customize the integration of new types of data. Exemplar results from 200+ participants and 11 different pipelines demonstrate the utility of the infrastructure.

15.
Child Dev ; 92(6): e1361-e1376, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34291820

RESUMO

The parent-adolescent relationship is important for adolescents' emotion regulation (ER), yet little is known regarding the neural patterns of dyadic ER that occur during parent-adolescent interactions. A novel measure that can be used to examine such patterns is cross-brain connectivity (CBC)-concurrent and time-lagged connectivity between two individuals' brain regions. This study sought to provide evidence of CBC and explore associations between CBC, parenting, and adolescent internalizing symptoms. Thirty-five adolescents (mean age = 15 years, 69% female, 72% Non-Hispanic White, 17% Black, 11% Hispanic or Latino) and one biological parent (94% female) completed an fMRI hyperscanning conflict discussion task. Results revealed CBC between emotion-related brain regions. Exploratory analyses indicated CBC is associated with parenting and adolescent depressive symptoms.


Assuntos
Comportamento do Adolescente , Adolescente , Emoções , Feminino , Humanos , Masculino , Relações Pais-Filho , Poder Familiar , Pais , Psicologia do Adolescente
16.
J Neural Eng ; 18(4)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34192674

RESUMO

Objective.Simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) recordings offer a high spatiotemporal resolution approach to study human brain and understand the underlying mechanisms mediating cognitive and behavioral processes. However, the high susceptibility of EEG to MRI-induced artifacts hinders a broad adaptation of this approach. More specifically, EEG data collected during fMRI acquisition are contaminated with MRI gradients and ballistocardiogram artifacts, in addition to artifacts of physiological origin. There have been several attempts for reducing these artifacts with manual and time-consuming pre-processing, which may result in biasing EEG data due to variations in selecting steps order, parameters, and classification of artifactual independent components. Thus, there is a strong urge to develop a fully automatic and comprehensive pipeline for reducing all major EEG artifacts. In this work, we introduced an open-access toolbox with a fully automatic pipeline for reducing artifacts from EEG data collected simultaneously with fMRI (refer to APPEAR).Approach.The pipeline integrates average template subtraction and independent component analysis to suppress both MRI-related and physiological artifacts. To validate our results, we tested APPEAR on EEG data recorded from healthy control subjects during resting-state (n= 48) and task-based (i.e. event-related-potentials (ERPs);n= 8) paradigms. The chosen gold standard is an expert manual review of the EEG database.Main results.We compared manually and automated corrected EEG data during resting-state using frequency analysis and continuous wavelet transformation and found no significant differences between the two corrections. A comparison between ERP data recorded during a so-called stop-signal task (e.g. amplitude measures and signal-to-noise ratio) also showed no differences between the manually and fully automatic fMRI-EEG-corrected data.Significance.APPEAR offers the first comprehensive open-source toolbox that can speed up advancement of EEG analysis and enhance replication by avoiding experimenters' preferences while allowing for processing large EEG-fMRI cohorts composed of hundreds of subjects with manageable researcher time and effort.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Eletroencefalografia , Humanos
17.
J Neural Eng ; 18(4)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34126595

RESUMO

Objective. Comprehensive denoising is imperative in functional magnetic resonance imaging (fMRI) analysis to reliably evaluate neural activity from the blood oxygenation level dependent signal. In real-time fMRI, however, only a minimal denoising process has been applied and the impact of insufficient denoising on online brain activity estimation has not been assessed comprehensively. This study evaluated the noise reduction performance of online fMRI processes in a real-time estimation of regional brain activity and functional connectivity.Approach.We performed a series of real-time processing simulations of online fMRI processing, including slice-timing correction, motion correction, spatial smoothing, signal scaling, and noise regression with high-pass filtering, motion parameters, motion derivatives, global signal, white matter/ventricle average signals, and physiological noise models with image-based retrospective correction of physiological motion effects (RETROICOR) and respiration volume per time (RVT).Main results.All the processing was completed in less than 400 ms for whole-brain voxels. Most processing had a benefit for noise reduction except for RVT that did not work due to the limitation of the online peak detection. The global signal regression, white matter/ventricle signal regression, and RETROICOR had a distinctive noise reduction effect, depending on the target signal, and could not substitute for each other. Global signal regression could eliminate the noise-associated bias in the mean dynamic functional connectivity across time.Significance.The results indicate that extensive real-time denoising is possible and highly recommended for real-time fMRI applications.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Estudos Retrospectivos
18.
PLoS One ; 16(6): e0253863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34170961

RESUMO

BACKGROUND: In patients with degenerative cervical myelopathy (DCM) that have spinal cord compression and sensorimotor deficits, surgical decompression is often performed. However, there is heterogeneity in clinical presentation and post-surgical functional recovery. OBJECTIVES: Primary: a) to assess differences in muscle fat infiltration (MFI) in patients with DCM versus controls, b) to assess association between MFI and clinical disability. Secondary: to assess association between MFI pre-surgery and post-surgical functional recovery. STUDY DESIGN: Cross-sectional case control study. METHODS: Eighteen patients with DCM (58.6 ± 14.2 years, 10 M/8F) and 25 controls (52.6 ± 11.8 years, 13M/12 F) underwent 3D Dixon fat-water imaging. A convolutional neural network (CNN) was used to segment cervical muscles (MFSS- multifidus and semispinalis cervicis, LC- longus capitis/colli) and quantify MFI. Modified Japanese Orthopedic Association (mJOA) and Nurick were collected. RESULTS: Patients with DCM had significantly higher MFI in MFSS (20.63 ± 5.43 vs 17.04 ± 5.24, p = 0.043) and LC (18.74 ± 6.7 vs 13.66 ± 4.91, p = 0.021) than controls. Patients with increased MFI in LC and MFSS had higher disability (LC: Nurick (Spearman's ρ = 0.436, p = 0.003) and mJOA (ρ = -0.399, p = 0.008)). Increased MFI in LC pre-surgery was associated with post-surgical improvement in Nurick (ρ = -0.664, p = 0.026) and mJOA (ρ = -0.603, p = 0.049). CONCLUSION: In DCM, increased muscle adiposity is significantly associated with sensorimotor deficits, clinical disability, and functional recovery after surgery. Accurate and time efficient evaluation of fat infiltration in cervical muscles may be conducted through implementation of CNN models.


Assuntos
Vértebras Cervicais/cirurgia , Descompressão Cirúrgica , Doenças da Medula Espinal/cirurgia , Espondilose/cirurgia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/metabolismo , Vértebras Cervicais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sistema Musculoesquelético/metabolismo , Sistema Musculoesquelético/patologia , Sistema Musculoesquelético/cirurgia , Pescoço/patologia , Pescoço/cirurgia , Músculos do Pescoço/metabolismo , Músculos do Pescoço/patologia , Músculos do Pescoço/cirurgia , Músculos Paraespinais , Recuperação de Função Fisiológica/fisiologia , Compressão da Medula Espinal/patologia , Compressão da Medula Espinal/cirurgia , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/metabolismo , Doenças da Medula Espinal/patologia , Espondilose/diagnóstico por imagem , Espondilose/metabolismo , Espondilose/patologia , Resultado do Tratamento
19.
Neuroimage ; 237: 118207, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048901

RESUMO

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Assuntos
Neuroimagem Funcional , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neurorretroalimentação , Adulto , Humanos
20.
Hum Brain Mapp ; 42(10): 3216-3227, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33835628

RESUMO

Floatation-Reduced Environmental Stimulation Therapy (REST) is a procedure that reduces stimulation of the human nervous system by minimizing sensory signals from visual, auditory, olfactory, gustatory, thermal, tactile, vestibular, gravitational, and proprioceptive channels, in addition to minimizing musculoskeletal movement and speech. Initial research has found that Floatation-REST can elicit short-term reductions in anxiety, depression, and pain, yet little is known about the brain networks impacted by the intervention. This study represents the first functional neuroimaging investigation of Floatation-REST, and we utilized a data-driven exploratory analysis to determine whether the intervention leads to altered patterns of resting-state functional connectivity (rsFC). Healthy participants underwent functional magnetic resonance imaging (fMRI) before and after 90 min of Floatation-REST or a control condition that entailed resting supine in a zero-gravity chair for an equivalent amount of time. Multivariate Distance Matrix Regression (MDMR), a statistically-stringent whole-brain searchlight approach, guided subsequent seed-based connectivity analyses of the resting-state fMRI data. MDMR identified peak clusters of rsFC change between the pre- and post-float fMRI, revealing significant decreases in rsFC both within and between posterior hubs of the default-mode network (DMN) and a large swath of cortical tissue encompassing the primary and secondary somatomotor cortices extending into the posterior insula. The control condition, an active form of REST, showed a similar pattern of reduced rsFC. Thus, reduced stimulation of the nervous system appears to be reflected by reduced rsFC within the brain networks most responsible for creating and mapping our sense of self.


Assuntos
Conectoma , Rede de Modo Padrão/fisiologia , Hidroterapia , Córtex Insular/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Privação Sensorial/fisiologia , Córtex Somatossensorial/fisiologia , Adolescente , Adulto , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Córtex Insular/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...