Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(94): 13993-13996, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37938062

RESUMO

Tacticity is critical to polymer properties. The influence of solvent on tacticity in the catalytic synthesis of cyclic polynorbornene (c-PNB) is reported. In toluene cis,syndiotactic c-PNB forms; in THF, cis,syn/iso c-PNB forms.

2.
ACS Macro Lett ; 11(9): 1079-1084, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35984360

RESUMO

RAFT step-growth polymerization was previously demonstrated with monomers that bear low rate of homopropagation to favor the chain transfer process; by contrast, acrylates are known to be fast homopropagating monomers, thereby posing serious challenges for RAFT step-growth. Here, we identified a chain transfer agent (CTA) that rapidly yields single unit monomer inserted (SUMI) CTA adducts with a model acrylate monomer. Using a bifunctional reagent of this CTA, we successfully demonstrated RAFT step-growth polymerization with diacrylates, yielding linear polymer backbones. Furthermore, we achieved inclusion of functionality (i.e., disulfide) into RAFT step-growth polymer via a disulfide incorporated bifunctional CTA. Grafting from this backbone resulted in molecular brush polymers with cleavable functionality in each repeat unit of the backbone, allowing selective degradation to afford well-defined unimolecular species of two polymeric side chains. Given the wide selection of commercially available diacrylates, RAFT step-growth polymerization of diacrylates will further enable facile synthesis of complex architectures with modular backbones.


Assuntos
Acrilatos , Polímeros , Acrilatos/química , Reagentes de Ligações Cruzadas , Dissulfetos , Polimerização
3.
Angew Chem Int Ed Engl ; 59(18): 7203-7208, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32061176

RESUMO

An orthogonal combination of cationic and radical RAFT polymerizations is used to synthesize bottlebrush polymers using two distinct RAFT agents. Selective consumption of the first RAFT agent is used to control the cationic RAFT polymerization of a vinyl ether monomer bearing a secondary dormant RAFT agent, which subsequently allows side-chain polymers to be grafted from the pendant RAFT agent by a radical-mediated RAFT polymerization of a different monomer, thus completing the synthesis of bottlebrush polymers. The high efficiency and selectivity of the cationic and radical RAFT polymerizations allow both polymerizations to be conducted in one-pot tandem without intermediate purification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...