Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1258982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444585

RESUMO

Genome-wide association studies have identified several hundred loci associated with type 2 diabetes mellitus (T2DM). Additionally, pathogenic variants in several genes are known to cause monogenic diabetes that overlaps clinically with T2DM. Whole-exome sequencing of related individuals with T2DM is a powerful approach to identify novel high-penetrance disease variants in coding regions of the genome. We performed whole-exome sequencing on four related individuals with T2DM - including one individual diagnosed at the age of 33 years. The individuals were negative for mutations in monogenic diabetes genes, had a strong family history of T2DM, and presented with several characteristics of metabolic syndrome. A missense variant (p.N2291D) in the type 2 ryanodine receptor (RyR2) gene was one of eight rare coding variants shared by all individuals. The variant was absent in large population databases and affects a highly conserved amino acid located in a mutational hotspot for pathogenic variants in Catecholaminergic polymorphic ventricular tachycardia (CPVT). Electrocardiogram data did not reveal any cardiac abnormalities except a lower-than-normal resting heart rate (< 60 bpm) in two individuals - a phenotype observed in CPVT individuals with RyR2 mutations. RyR2-mediated Ca2+ release contributes to glucose-mediated insulin secretion and pathogenic RyR2 mutations cause glucose intolerance in humans and mice. Analysis of glucose tolerance testing data revealed that missense mutations in a CPVT mutation hotspot region - overlapping the p.N2291D variant - are associated with complete penetrance for glucose intolerance. In conclusion, we have identified an atypical missense variant in the RyR2 gene that co-segregates with diabetes in the absence of overt CPVT.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Adulto , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Sequenciamento do Exoma , Estudo de Associação Genômica Ampla , Glucose , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
2.
Genome Med ; 16(1): 45, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539228

RESUMO

BACKGROUND: Type 1 diabetes mellitus (T1DM) is a prototypic endocrine autoimmune disease resulting from an immune-mediated destruction of pancreatic insulin-secreting ß  cells. A comprehensive immune cell phenotype evaluation in T1DM has not been performed thus far at the single-cell level. METHODS: In this cross-sectional analysis, we generated a single-cell transcriptomic dataset of peripheral blood mononuclear cells (PBMCs) from 46 manifest T1DM (stage 3) cases and 31 matched controls. RESULTS: We surprisingly detected profound alterations in circulatory immune cells (1784 dysregulated genes in 13 immune cell types), far exceeding the count in the comparator systemic autoimmune disease SLE. Genes upregulated in T1DM were involved in WNT signaling, interferon signaling and migration of T/NK cells, antigen presentation by B cells, and monocyte activation. A significant fraction of these differentially expressed genes were also altered in T1DM pancreatic islets. We used the single-cell data to construct a T1DM metagene z-score (TMZ score) that distinguished cases and controls and classified patients into molecular subtypes. This score correlated with known prognostic immune markers of T1DM, as well as with drug response in clinical trials. CONCLUSIONS: Our study reveals a surprisingly strong systemic dimension at the level of immune cell network in T1DM, defines disease-relevant molecular subtypes, and has the potential to guide non-invasive test development and patient stratification.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Leucócitos Mononucleares/metabolismo , Estudos Transversais , Análise da Expressão Gênica de Célula Única
3.
Diabetes Metab Res Rev ; 40(2): e3770, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450851

RESUMO

Diagnosis and management of type 1 diabetes (T1D) have remained largely unchanged for the last several years. The management of the disease remains primarily focused on its phenotypical presentation and less on endotypes, namely the specific biological mechanisms behind the development of the disease. Furthermore, the treatment of T1D is essentially universal and indiscriminate-with patients administering insulin at varying dosages and frequencies to maintain adequate glycaemic control. However, it is now well understood that T1D is a heterogeneous disease with many different biological mechanisms (i.e. endotypes) behind its complex pathophysiology. A range of factors, including age of onset, immune system regulation, rate of ß-cell destruction, autoantibodies, body weight, genetics and the exposome are recognised to play a role in the development of the condition. Patients can be classified into distinct diabetic subtypes based on these factors, which can be used to categorise patients into specific endotypes. The classification of patients into endotypes allows for a greater understanding of the natural progression of the disease, giving rise to more accurate and patient-centred therapies and follow-up monitoring, specifically for other autoimmune diseases. This review proposes 6 unique endotypes of T1D based on the current literature. The recognition of these endotypes could then be used to direct therapeutic modalities based on patients' individual pathophysiology.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Humanos , Insulina Regular Humana , Autoanticorpos , Peso Corporal
4.
J Diabetes ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169110

RESUMO

AIMS: The widely used dynamic disposition index, derived from oral glucose tolerance testing, is an integrative measure of the homeostatic performance of the insulin-glucose feedback control. Its collection is, however, time consuming and expensive. We, therefore, pursued the question if such a measure can be calculated at baseline/fasting conditions using plasma concentrations of insulin and glucose. METHODS: A new fasting-based disposition index (structure parameter inference approach-disposition index [SPINA-DI]) was calculated as the product of the reconstructed insulin receptor gain (SPINA-GR) times the secretory capacity of pancreatic beta cells (SPINA-GBeta). The novel index was evaluated in computer simulations and in three independent, multiethnic cohorts. The objectives were distribution in various populations, diagnostic performance, reliability and correlation to established physiological biomarkers of carbohydrate metabolism. RESULTS: Mathematical and in-silico analysis demonstrated SPINA-DI to mirror the hyperbolic relationship between insulin sensitivity and beta-cell function and to represent an optimum of the homeostatic control. It significantly correlates to the oral glucose tolerance test based disposition index and other important physiological parameters. Furthermore, it revealed higher discriminatory power for the diagnosis of (pre)diabetes and superior retest reliability than other static and dynamic function tests of glucose homeostasis. CONCLUSIONS: SPINA-DI is a novel simple reliable and inexpensive marker of insulin-glucose homeostasis suitable for screening purposes and a wider clinical application.

5.
Case Rep Cardiol ; 2023: 6555998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969731

RESUMO

Background. Atrial fibrillation (AF) is a common arrhythmia in elderly patients and is associated with increased risk of mortality. The pathogenesis of AF is complex and based on multiple genetic and environmental factors. Genome-wide association studies identified several loci in AF patients, indicating the complex genetic architecture of this disease. In rare cases, familial forms of AF have been described. Today, pathogenic variants in at least 11 different genes are associated with monogenic AF. Case presentation. The 37-year-old male patient presented to our emergency department with AF. At the age of 35, he had already been diagnosed with paroxysmal AF. Additionally, his 34-year-old brother had also been diagnosed with AF as well as nonobstructive hypertrophic cardiomyopathy. Moreover, the patient's father was diagnosed with AF in his twenties. Transthoracic echocardiography and cardiac MRI revealed a reduced systolic left ventricular ejection without any signs of hypertrophic cardiomyopathy. Genetic testing identified the heterozygous missense variants c.3371C > T, p.(Pro1124Leu) in RYR2 (NM_001035.3) and c.2524C > A, p.(Pro842Thr) in HCN4 (NM_005477.3) in the patient's and his brother's DNA. Discussion. This case of familial AF helps to strengthen the role of RYR2 as a disease gene in the context of AF. Although the variant in RYR2 needs to be classified formally as variant of unknown significance, we regard it as probably disease-causing due to the previously published data. As RYR2 has already been identified as a possible target for prevention and therapy of AF, the knowledge of variants in RYR2 might become even more crucial for individual molecular therapies in the future.

6.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838895

RESUMO

Exosomes released into the extracellular matrix have been reported to contain metabolic biomarkers of various diseases. These intraluminal vesicles are typically found in blood, urine, saliva, breast milk, cerebrospinal fluid, semen, amniotic fluid, and ascites. Analysis of exosomal content with specific profiles of DNA, microRNA, proteins, and lipids can mirror their cellular origin and physiological state. Therefore, exosomal cargos may reflect the physiological processes at cellular level and can potentially be used as biomarkers. Herein, we report an optical detection method for assaying exosomal biomarkers that supersedes the state-of-the-art time consuming and laborious assays such as ELISA and NTA. The proposed assay monitors the changes in optical properties of poly(3-(4-methyl-3'-thienyloxy) propyltriethylammonium bromide) upon interacting with aptamers/peptide nucleic acids in the presence or absence of target biomarkers. As a proof of concept, this study demonstrates facile assaying of microRNA, DNA, and advanced glycation end products in exosomes isolated from human plasma with detection levels of ~1.2, 0.04, and 0.35 fM/exosome, respectively. Thus, the obtained results illustrate that the proposed methodology is applicable for rapid and facile detection of generic exosomal biomarkers for facilitating diseases diagnosis.


Assuntos
Exossomos , MicroRNAs , Feminino , Humanos , Colorimetria , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Proteínas/metabolismo , Exossomos/metabolismo , Biomarcadores Tumorais/metabolismo
7.
Eur J Hum Genet ; 31(1): 89-96, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202929

RESUMO

Pathogenic variants in more than 14 genes have been implicated in monogenic diabetes; however, a significant fraction of individuals with young-onset diabetes and a strong family history of diabetes have unknown genetic etiology. To identify novel pathogenic alleles for monogenic diabetes, we performed whole-genome sequencing (WGS) on four related individuals with type 2 diabetes - including one individual diagnosed at the age of 31 years - that were negative for mutations in known monogenic diabetes genes. The individuals were ascertained from a large case-control study and had a multi-generation family history of diabetes. Identity-by-descent (IBD) analysis revealed that the four individuals represent two sib-pairs that are third-degree relatives. A novel missense mutation (p.P81S) in the PAX6 gene was one of eight rare coding variants across the genome shared IBD by all individuals and was inherited from affected mothers in both sib-pairs. The mutation affects a highly conserved amino acid located in the paired-domain of PAX6 - a hotspot for missense mutations that cause aniridia and other eye abnormalities. However, no eye-related phenotype was observed in any individual. The well-established functional role of PAX6 in glucose-induced insulin secretion and the co-segregation of diabetes in families with aniridia provide compelling support for the pathogenicity of this mutation for diabetes. The mutation could be classified as "likely pathogenic" with a posterior probability of 0.975 according to the ACMG/AMP guidelines. This is the first PAX6 missense mutation that is likely pathogenic for autosomal-dominant adult-onset diabetes without eye abnormalities.


Assuntos
Aniridia , Diabetes Mellitus Tipo 2 , Anormalidades do Olho , Humanos , Diabetes Mellitus Tipo 2/genética , Fator de Transcrição PAX6/genética , Estudos de Casos e Controles , Mutação , Anormalidades do Olho/genética , Aniridia/genética , Proteínas de Homeodomínio/genética , Proteínas do Olho/genética , Linhagem
8.
Sci Rep ; 12(1): 17659, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271244

RESUMO

Modelling insulin-glucose homeostasis may provide novel functional insights. In particular, simple models are clinically useful if they yield diagnostic methods. Examples include the homeostasis model assessment (HOMA) and the quantitative insulin sensitivity check index (QUICKI). However, limitations of these approaches have been criticised. Moreover, recent advances in physiological and biochemical research prompt further refinement in this area. We have developed a nonlinear model based on fundamental physiological motifs, including saturation kinetics, non-competitive inhibition, and pharmacokinetics. This model explains the evolution of insulin and glucose concentrations from perturbation to steady-state. Additionally, it lays the foundation of a structure parameter inference approach (SPINA), providing novel biomarkers of carbohydrate homeostasis, namely the secretory capacity of beta-cells (SPINA-GBeta) and insulin receptor gain (SPINA-GR). These markers correlate with central parameters of glucose metabolism, including average glucose infusion rate in hyperinsulinemic glucose clamp studies, response to oral glucose tolerance testing and HbA1c. Moreover, they mirror multiple measures of body composition. Compared to normal controls, SPINA-GR is significantly reduced in subjects with diabetes and prediabetes. The new model explains important physiological phenomena of insulin-glucose homeostasis. Clinical validation suggests that it may provide an efficient biomarker panel for screening purposes and clinical research.


Assuntos
Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Receptor de Insulina , Glicemia/metabolismo , Hemoglobinas Glicadas , Insulina/farmacologia , Biomarcadores , Modelos Teóricos
9.
Nat Rev Dis Primers ; 8(1): 63, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138034

RESUMO

Adult-onset autoimmune (AOA) diabetes pathophysiology starts with immune changes, followed by dysglycaemia and overt disease. AOA diabetes can occur as classic type 1 diabetes when associated with severe loss of insulin secretion. More frequently, it is diagnosed as latent autoimmune diabetes in adults, a slowly progressing form with late onset, a long period not requiring insulin, and it is often misdiagnosed as type 2 diabetes. As its clinical presentation varies remarkably and immune markers often lack specificity, it is challenging to classify each case ad hoc, especially when insulin treatment is not required at diagnosis. Proper care of AOA diabetes aims to prevent complications and to improve quality of life and life expectancy. To achieve these goals, attention should be paid to lifestyle factors, with the aid of pharmacological therapies properly tailored to each individual clinical setting. Given the heterogeneity of the disease, choosing the right therapy for AOA diabetes is challenging. Most of the trials testing disease-modifying therapies for autoimmune diabetes are conducted in people with childhood onset, whereas non-insulin diabetes therapies have mostly been studied in the larger population with type 2 diabetes. More randomized controlled trials of therapeutic agents in AOA diabetes are needed.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adulto , Biomarcadores , Criança , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Insulina/uso terapêutico , Qualidade de Vida
10.
Front Endocrinol (Lausanne) ; 13: 943993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872988

RESUMO

Major advancements are expected in medicine and healthcare in the 21st century- "Digital Age", mainly due to the application of data technologies and artificial intelligence into healthcare. In this perspective article we share a short story depicting the future Cushings' Disease patient and the postulated diagnostic and management approaches. In the discussion, we explain the advances in recent times which makes this future state plausible. We postulate that endocrinology care will be completely reinvented in the Digital Age.


Assuntos
Endocrinologia , Hipersecreção Hipofisária de ACTH , Inteligência Artificial , Humanos , Hipersecreção Hipofisária de ACTH/diagnóstico , Hipersecreção Hipofisária de ACTH/terapia
12.
Front Endocrinol (Lausanne) ; 13: 844040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350098

RESUMO

The management of diabetes mellitus in an insulin-dependent patient is challenging in the setting of concomitant antibody-mediated-insulin hypersensitivity. We report a case of a 62-year-old woman with pre-existing type 2 diabetes mellitus of 10 years duration who developed type 3 hypersensitivity reaction to insulin analogue detemir, and subsequently, severe diabetic ketoacidosis (DKA). She was C-peptide negative and was diagnosed with insulin-dependent diabetes. Despite increasing dose adjustments, insulin-meal matching, and compliance with insulin, she experienced episodes of unexpected hyperglycaemia and hypoglycaemia. The development of rash after detemir initiation and rapid progression to DKA suggests an aberrant immune response leading to the insulin allergy and antibody-induced interference with insulin analogues. Glycaemic control in the patient initially improved after being started on subcutaneous insulin infusion pump with reduced insulin requirements. However, after a year on pump therapy, localised insulin hypersensitivity reactions started, and glycaemic control gradually deteriorated.


Assuntos
Diabetes Mellitus Tipo 2 , Cetoacidose Diabética , Hipersensibilidade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cetoacidose Diabética/induzido quimicamente , Cetoacidose Diabética/tratamento farmacológico , Feminino , Humanos , Hipersensibilidade/tratamento farmacológico , Insulina/efeitos adversos , Sistemas de Infusão de Insulina , Pessoa de Meia-Idade
13.
Blood ; 139(17): 2653-2665, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35231105

RESUMO

Increasing evidence links metabolism, protein synthesis, and growth signaling to impairments in the function of hematopoietic stem and progenitor cells (HSPCs) during aging. The Lin28b/Hmga2 pathway controls tissue development, and the postnatal downregulation of this pathway limits the self-renewal of adult vs fetal hematopoietic stem cells (HSCs). Igf2bp2 is an RNA binding protein downstream of Lin28b/Hmga2, which regulates messenger RNA stability and translation. The role of Igf2bp2 in HSC aging is unknown. In this study, an analysis of wild-type and Igf2bp2 knockout mice showed that Igf2bp2 regulates oxidative metabolism in HSPCs and the expression of metabolism, protein synthesis, and stemness-related genes in HSCs of young mice. Interestingly, Igf2bp2 expression and function strongly declined in aging HSCs. In young mice, Igf2bp2 deletion mimicked aging-related changes in HSCs, including changes in Igf2bp2 target gene expression and impairment of colony formation and repopulation capacity. In aged mice, Igf2bp2 gene status had no effect on these parameters in HSCs. Unexpectedly, Igf2bp2-deficient mice exhibited an amelioration of the aging-associated increase in HSCs and myeloid-skewed differentiation. The results suggest that Igf2bp2 controls mitochondrial metabolism, protein synthesis, growth, and stemness of young HSCs, which is necessary for full HSC function during young adult age. However, Igf2bp2 gene function is lost during aging, and it appears to contribute to HSC aging in 2 ways: the aging-related loss of Igf2bp2 gene function impairs the growth and repopulation capacity of aging HSCs, and the activity of Igf2bp2 at a young age contributes to aging-associated HSC expansion and myeloid skewing.


Assuntos
Envelhecimento , Células-Tronco Hematopoéticas , Proteínas de Ligação a RNA , Envelhecimento/genética , Animais , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
15.
ACS Appl Mater Interfaces ; 14(1): 94-103, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34964349

RESUMO

Profiling of advanced glycation end products (AGEs) is an emerging area of clinical significance for disease diagnosis and prognosis. Typically, concentrations of AGEs are estimated in laboratories by trained personnel using sophisticated equipment. Herein, a facile approach for colorimetric and fluorometric profiling of AGEs is reported for rapid and on-site analysis. The concentrations of AGE levels in plasma are estimated via changes in optical properties of polythiophenes (PTs) upon interaction with aptamers (Apts) in the presence and in the absence of AGEs. To validate the proposed approach, glyceraldehyde-derived AGEs (AGE class 1 [AGE1]), the biomarker associated with cardiovascular diseases and diabetes, are used as a model system. Colorimetric analysis yielded linear responses for AGE1 for clinically relevant concentration ranges between 1.5 and 300 µg/mL with a limit of detection (LOD) of ∼1.3 µg/mL. Subsequently, an approach utilizing PTs with four different pendant groups in conjunction with four different Apts is demonstrated for qualitative colorimetric profiling and for quantitative fluorometric profiling of up to four AGEs in clinical matrices. Principal component analysis (PCA) of fluorometric responses of AGE-spiked samples yielded distinct responses for the different AGEs tested. Thus, the proposed approach ascertains rapid profiling of spiked AGEs in plasma samples without the requirement of preanalytical processing and advanced instrumentation, thereby facilitating on-site diagnosis.


Assuntos
Colorimetria/métodos , Produtos Finais de Glicação Avançada/sangue , Espectrometria de Fluorescência/métodos , Aptâmeros de Nucleotídeos/química , Biomarcadores/sangue , Biomarcadores/química , Corantes Fluorescentes/química , Produtos Finais de Glicação Avançada/química , Humanos , Limite de Detecção , Polímeros/química , Tiofenos/química
16.
Lancet Diabetes Endocrinol ; 9(11): 786-798, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619105

RESUMO

Up to 50% of the people who have died from COVID-19 had metabolic and vascular disorders. Notably, there are many direct links between COVID-19 and the metabolic and endocrine systems. Thus, not only are patients with metabolic dysfunction (eg, obesity, hypertension, non-alcoholic fatty liver disease, and diabetes) at an increased risk of developing severe COVID-19 but also infection with SARS-CoV-2 might lead to new-onset diabetes or aggravation of pre-existing metabolic disorders. In this Review, we provide an update on the mechanisms of how metabolic and endocrine disorders might predispose patients to develop severe COVID-19. Additionally, we update the practical recommendations and management of patients with COVID-19 and post-pandemic. Furthermore, we summarise new treatment options for patients with both COVID-19 and diabetes, and highlight current challenges in clinical management.


Assuntos
COVID-19/epidemiologia , COVID-19/metabolismo , Gerenciamento Clínico , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/terapia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Humanos , Hipertensão/epidemiologia , Hipertensão/metabolismo , Hipertensão/terapia , Doenças Metabólicas/terapia , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade/terapia
17.
Nat Med ; 27(11): 1928-1940, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663987

RESUMO

Genes involved in distinct diabetes types suggest shared disease mechanisms. Here we show that One Cut Homeobox 1 (ONECUT1) mutations cause monogenic recessive syndromic diabetes in two unrelated patients, characterized by intrauterine growth retardation, pancreas hypoplasia and gallbladder agenesis/hypoplasia, and early-onset diabetes in heterozygous relatives. Heterozygous carriers of rare coding variants of ONECUT1 define a distinctive subgroup of diabetic patients with early-onset, nonautoimmune diabetes, who respond well to diabetes treatment. In addition, common regulatory ONECUT1 variants are associated with multifactorial type 2 diabetes. Directed differentiation of human pluripotent stem cells revealed that loss of ONECUT1 impairs pancreatic progenitor formation and a subsequent endocrine program. Loss of ONECUT1 altered transcription factor binding and enhancer activity and NKX2.2/NKX6.1 expression in pancreatic progenitor cells. Collectively, we demonstrate that ONECUT1 controls a transcriptional and epigenetic machinery regulating endocrine development, involved in a spectrum of diabetes, encompassing monogenic (recessive and dominant) as well as multifactorial inheritance. Our findings highlight the broad contribution of ONECUT1 in diabetes pathogenesis, marking an important step toward precision diabetes medicine.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Fator 6 Nuclear de Hepatócito/genética , Pâncreas/embriologia , Diferenciação Celular/genética , Anormalidades Congênitas/genética , Retardo do Crescimento Fetal/genética , Vesícula Biliar/anormalidades , Proteína Homeobox Nkx-2.2/biossíntese , Proteínas de Homeodomínio/biossíntese , Humanos , Lactente , Recém-Nascido , Masculino , Herança Multifatorial/genética , Organogênese/genética , Pâncreas/anormalidades , Pancreatopatias/congênito , Pancreatopatias/genética , Células-Tronco Pluripotentes/citologia , Transcrição Gênica/genética
19.
Sci Total Environ ; 797: 149031, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346361

RESUMO

Wastewater-based epidemiology (WBE) is a tool now increasingly proposed to monitor the SARS-CoV-2 burden in populations without the need for individual mass testing. It is especially interesting in metropolitan areas where spread can be very fast, and proper sewage systems are available for sampling with short flow times and thus little decay of the virus. We started in March 2020 to set up a once-a-week qualified spot sampling protocol in six different locations in Munich carefully chosen to contain primarily wastewater of permanent residential areas, rather than industry or hospitals. We used RT-PCR and sequencing to track the spread of SARS-CoV-2 in the Munich population with temporo-spatial resolution. The study became fully operational in mid-April 2020 and has been tracking SARS-CoV-2 RNA load weekly for one year. Sequencing of the isolated viral RNA was performed to obtain information about the presence and abundance of variants of concern in the Munich area over time. We demonstrate that the evolution of SARS-CoV-2 RNA loads (between <7.5 and 3874/ml) in these different areas within Munich correlates well with official seven day incidence notification data (between 0.0 and 327 per 100,000) obtained from the authorities within the respective region. Wastewater viral loads predicted the dynamic of SARS-CoV-2 local incidence about 3 weeks in advance of data based on respiratory swab analyses. Aligning with multiple different point-mutations characteristic for certain variants of concern, we could demonstrate the gradual increase of variant of concern B.1.1.7 in the Munich population beginning in January 2021, weeks before it became apparent in sequencing results of swabs samples taken from patients living in Munich. Overall, the study highlights the potential of WBE to monitor the SARS-CoV-2 pandemic, including the introduction of variants of concern in a local population.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Esgotos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...